Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Self-control is a complex and multifaceted construct that can be regarded as an individual trait that follows its own developmental trajectory. In the presented study we used NAS-50 for the assessment of self-control in adolescents and young adults. Since the questionnaire has not been used before in underage participants we tested its reliability in adolescent and adult samples. We also investigated possible age and gender differences in self-control abilities as well as relations between NAS-50 and behavioral measures of cognitive control and impulsivity. Although the sample was quite small, the reliability of the questionnaire was similar to the results achieved by its authors. According to the predictions in the literature we did not find relations between NAS-50 and behavioral measures of cognitive control and impulsivity. We also did not observe significant age differences in the assessment of self-control abilities. The theoretical relevance of our results is discussed.

Go to article

Authors and Affiliations

Joanna Fryt
Tomasz Smoleń
Karolina Czernecka
Download PDF Download RIS Download Bibtex

Abstract

The influence of physicochemical parameters of halloysite-carbon composites on the adsorption of skin disinfectants was investigated. The dispersive surface free energy and acid-base properties of halloysite-carbon composites were determined using inverse gas chromatography. The free adsorption energy was higher for all halloysite-carbon composites compared to the unmodified halloysite, which acted as a less electron-donating adsorbent. In contrast, the composite obtained using halloysite nanotubes (HNT) and ground microcrystalline cellulose as the carbon precursor exhibited the highest free adsorption energy and the Kb/Ka ratio. These results suggest that the free adsorption energy can be an additional factor influencing the adsorption process. We demonstrated that the composite with the highest free adsorption energy is effective for removing triclosan, chloroxylenol and chlorophene from water. The acid-base properties of halloysite-carbon composites enhance the adsorption of these compounds due to their acidic character. The composite with the highest Kb/Ka ratio removes adsorbates from aqueous solutions with the greatest efficiency. Parameters such as free dispersion energy, electron-donating, or electron-accepting properties of the adsorbent help explain why these composites exhibit high adsorption capabilities.
Go to article

Bibliography

  1. Barber A.H., Cohen S.R. & Wagner H.D. (2004) Static and dynamic wetting of carbon nanotubes, Physical Review Letters, 92 186103. DOI:10.1103/PhysRevLett.92.186103.
  2. Bilal, M., Barceló, D. & Iqbal, H.M.N. (2020). Persistence, ecological risks, and oxidoreductases-assisted biocatalytic removal of triclosan from the aquatic environment. Sci. Total Environ. 735, 139194. DOI:10.1016/j.scito tenv.2020.139194.
  3. Dorris, G.M. & Gray, D.G. (1980). Adsorption of n-alkanes at zero surface coverage on cellulose paper and wood fibers. J. Colloid Interface Sci. 77, pp. 353-362. DOI:10.1016/0021-9797(80)90304-5
  4. Frydel, L., Słomkiewicz, P. M. & Szczepanik, B. (2023). The adsorption studies of phenol derivatives on halloysite carbon adsorbents by inverse liquid chromatography, Adsorption. 30, pp.185-199. DOI:10.1007/s10450-023-00396-w.
  5. Gholami F., Tomas M., Gholami Z., Mirzaei S. & Vakili M. (2020). Surface Characterization of Carbonaceous Materials Using Inverse Gas Chromatography: A Review, Electrochem, 1, pp. 367–387. DOI:10.3390/electrochem1040024.
  6. Gogoi, A., Mazumder, P., Tyagi, V.K., Chaminda, G.G.T., An, A.K. & Kumar, M. (2018). Occurrence and fate of emerging contaminants in water environment: a review. Groundw. Sustain. Dev. 6, pp. 169– 180. DOI:10 1016/j.gsd.2017.12.009.
  7. Gutmann, V. (1978). The donor-acceptor approach to molecular interactions, Plenum Press, Nowy York.
  8. Mezgebe, M., Jiang, L. H., Shen, Q., Du, C. & Yu, H. R. (2012). Studies and comparison of liquid adsorption behavior and surface properties of single- and multiwall carbon nanotubes by capillary rise method, Colloid and Surfaces A: Physicochemical and Engineering Aspects, 415, pp.86-90. DOI:10.1016/j.colsurfa.2012.09.046.
  9. Nuriel, S., Liu, L., Barber, A.H. & Wagner, H.D. (2005). Direct measurement of multiwall nanotube surface tension, Chemical Physics Letters, 404, pp. 263–266. DOI:10.1016/j.cplett.2005.01.072.
  10. Ocak, H., Sakar, D., Cakar, F., Cankurtaran, O., Eran, B.B. & Karamanet, F. (2008). Use of inverse gas chromatography for the physicochemical characterization of a new synthesised liquid crystal: (S)-5-(2-methylbutoxy)-2-{[(4dodecyloxyphenyl)imino]methyl}phenol, Liquid Crystals, 35(12), pp. 1351-1358. DOI:10.1080/02678290802607691.
  11. Peng, Y., Gardner, D. J., Han, Y., Cai, Z. & Tshabalala, M. A. (2013). Influence of drying method on the surface energy of cellulose nanofibrils determined by inverse gas chromatography, Journal of Colloid and Interface Science, 405, 85. DOI:10.1016/j.jcis.2013.05.033.
  12. Riddle, F.L. & Fowkes, F.M. (1990). Spectral shifts in acid-base chemistry. 1. van der Waals contributions to acceptor numbers, Journal of the American Chemical Society, 112, 3259. DOI:10.1021/ja00165a001.
  13. Schultz, J., Lavielle, L. & Martin, C. (1987). The Role of the Interface in Carbon Fibre-Epoxy Composites. J. Adhes. 23, 45. DOI:10.1080/00218468708080469.
  14. Shi, B., Wang, Y. & Jia, L. (2011). Comparison of Dorris–Gray and Schultz methods for the calculation of surface dispersive free energy by inverse gas chromatography. Journal of Chromatography A, 1218, pp. 860–862. DOI:10.1016/j.chroma.2010.12.050.
  15. Singh, G. S., Lal, D. & Tripathi, V. S. (2004). Study of microporosity of active carbon spheres using inverse gas chromatographic and static adsorption techniques, Journal of Chromatography A, 1036, pp. 189-195. DOI:10.1016/j.chroma.2004.03.008.
  16. Słomkiewicz, P. M. (2019) Application of inverse gas chromatography in coadsorption studies. Camera Separatoria 2, 71. (in Polish)
  17. Szczepanik, B., Banaś, D., Kubala-Kukuś, A., Szary, K., Słomkiewicz, P. M., Rędzia, N. & Frydel, L. (2020). Surface Properties of Halloysite-Carbon Nanocomposites and Their Application for Adsorption of Paracetamol, Materials, 13, 5647. DOI:10.3390/ma13245647.
  18. Szczepanik, B., Rędzia, N., Frydel, L., Słomkiewicz, P. M., Kołbus, A., Styszko, K., Dziok, T. & Samojeden, B. (2019). Synthesis and Characterization of Halloysite/Carbon Nanocomposites for Enhanced NSAIDs Adsorption from Water, Materials 12, 3754. DOI:10.3390/ma12223754.
  19. Voelkel, A., Strzemiecka, B., Milczewska, K. & Okulus, Z. (2015). Inverse gas chromatographic examination of polymer composites, Open Chemistry 13, 893. DOI:10.1515/chem-2015-0104.
Go to article

Authors and Affiliations

Piotr Słomkiewicz
1
Beata Szczepanik
2
Laura Frydel
3
Maria Włodarczyk-Makuła
4

  1. Jan Kochanowski University Kielce, Poland
  2. Institute of Chemistry, Jan Kochanowski University, Poland
  3. University of Science and Technology Stanisław Staszic in Krakow, Faculty of Energy and Fuels Department of Fuel Technology, Poland
  4. Faculty of Infrastructure and Environment, Częstochowa University of Technology, Poland

This page uses 'cookies'. Learn more