Search results

Filters

  • Journals
  • Autorzy
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The design of new investments with underground floors in the downtown urban fabric calls for determining its impact on existing, often historic, neighboring facilities. The article presents the results of own research on 3D spatial arrangement numerical modeling of this type of investment. The scope of the research includes the analysis of neighboring buildings (including historic buildings), construction of the 3D numerical model, and calibration of the subsoil model taking into account the actual results of geodetic measurements. Own research as well as the completed housing development complex in Poland, downtown Warsaw, including data from project design and implementation documentation serve as the basis for research and analysis. As a result of said research and analysis, it was found that 3D computational models allow mapping of actual impacts within the designed new buildings and neighboring buildings, and as consequence - after appropriate calibration - a good reflection of soil displacements in the area of the planned investment. The knowledge of the anticipated values of soil displacements related to erecting new buildings is necessary at the design and implementation stages to ensure safety in all phases of works of existing buildings.
Go to article

Authors and Affiliations

Hanna Michalak
1
ORCID: ORCID
Paweł Przybysz
1

  1. Warsaw University of Technology, Faculty of Architecture, 55 Koszykowa St, 00-659 Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

In the present study, the problem of optimization of the motion mode of the tower crane's slewing mechanism in the steady-state mode of trolley movement is stated and solved. An optimization criterion, which includes the RMS values of the drive torque and the rate of its change over time, is minimized. The optimization is carried out taking into account the drive torque constraints, and under the specified boundary conditions of motion. Three optimization problems at different values of the weight coefficients are solved. In the first problem, priority is given to the drive torque, in the third – to the rate of the drive torque change, and in the second problem, the significance of both components is assumed equal. The optimization problems are nonlinear, thus a VСT-PSO method is applied to solve them. The obtained optimal start-up modes of the crane slewing mechanism eliminate pendulum load oscillations and high-frequency elastic oscillations of the tower. Most of the kinematic, dynamical, and power parameters at different values of the weight coefficients are quite close to each other. It indicates that the optimal modes of motion are significantly influenced by the boundary conditions, optimization parameters, and constraints
Go to article

Bibliography

[1] E.M. Abdel-Rahman, A.H. Nayfeh, and Z.N. Masoud. Dynamics and control of cranes: A review. Journal of Vibration and Control, 9(7):863–908, 2003. doi: 10.1177/1077546303009007007.
[2] S.C. Kang and E. Miranda. Physics based model for simulating the dynamics of tower cranes. In 2004 Proceeding of Xth International Conference on Computing in Civil and Building Engineering (ICCCBE), Weimar, Germany, June 2004. doi: 10.25643/bauhaus-universitaet.240.
[3] T. Kuo, Y-C. Chiang, S-Y. Cheng, and S.-C.J. Kang. Oscillation reduction method for fast crane operation. Modular and Offsite Construction (MOC) Summit Proceedings, pages 388–395, 2015. doi: 10.29173/mocs159.
[4] G. Sun and M. Kleeberger. Dynamic responses of hydraulic mobile crane with consideration of the drive system. Mechanism and Machine Theory. 38(12):1489–1508, 2003. doi: 10.1016/S0094-114X(03)00099-5.
[5] T. Čampara, H. Bukvić, D. Sprečić. Ability to control swinging of payload during the movement of the rotary cranes mechanism. In 4th International Conference on Intelligent Technologies in Logistics and Mechatronics Systems. Kaunas University of Technology Panevezys Institute, pages 52–55, Kaunas. Lithuania, 2009.
[6] V. Loveikin, Yu. Romasevych, A. Loveikin, and M. Korobko. Optimization of the trolley mechanism acceleration during tower crane steady slewing. Archive of Mechanical Engineering, 69(3):411–429, 2022. doi: 10.24425/ame.2022.140424.
[7] I.G. Carmona and J. Colado. Control of a two wired hammerhead tower crane. Nonlinear Dynamics, 84(4):2137–2148, 2016. doi: doi.org/10.1109/AIM.2016.7576860">10.1109/AIM.2016.7576860.
[9] R.P. Gerasymyak and V.A. Leshchev. Analysis and Synthesis of Crane Electromechanical Systems. 2008. (in Russian).
[10] R.P. Gerasymyak and O.V. Naidenko. Features of the control of the electric drive of the boom departure mechanism during the rotation of the crane with a suspended load. Electrical Engineering and Electrical Equipment, 68:11–15, 2007. (in Ukrainian).
[11] Naidenko E.V. Electric drive control of horizontal movement mechanisms with a suspended load. Electric Machine Building and Electric Control, 69:17–22, 2007.
[12] M. Čolić, N. Pervan, M. Delić, A.J. Muminović, S. Odžak, and V. Hadžiabdić. Mathematical modelling of bridge crane dynamics for the time of non-stationary regimes of working hoist mechanism. Archive of Mechanical Engineering, 69(2):189–202, 2022. doi: 10.24425/ame.2022.140415.
[13] S. Chwastek. Optimization of crane mechanism to reduce vibration. Automation in Construction, 119:103335, 2020. doi: 10.1016/j.autcon.2020.103335.
[14] V. Loveikin, Yu. Romasevych, A. Loveikin, A. Lyashko,and M. Korobko. Minimization of high frequency oscillations of trolley movement mechanism during steady tower crane slewing. UPB Scientific Bulletin, Series D: Mechanical Engineering, 84(1):31-44, 2022.
[15] Z. Liu, T. Yang, N. Sun, and Y. Fang. An antiswing trajectory planning method with state constraints for 4-DOF tower cranes: Design and experiments. IEEE Access, 7: 62142–62151, 2019. doi: 10.1109/ACCESS.2019.2915999.
[16] T.K. Nguyen. Combination of feedback control and spring-damper to reduce the vibration of crane payload. Archive of Mechanical Engineering, 68(2):165–181, 2021. doi: 10.24425/ame.2021.137046.
[17] G. Rigatos, M. Abbaszadeh, and J. Pomares. Nonlinear optimal control for the 4-DOF underactuated robotic tower crane. Autonomous Intelligent Systems, 2:21, 2022. doi: 10.1007/s43684-022-00040-4.
[18] A. Al-Fadhli and E. Khorshid. Payload oscillation control of tower crane using smooth command input. Journal of Vibration and Control, 29(3-4):902–915. 2023. doi: 10.1177/10775463211054640.
[19] S.-J. Kimmerle, M. Gerdts, and R. Herzog. An optimal control problem for a rotating elastic crane-trolley-load system. IFAC-PapersOnLine, 51(2):272-277, 2018, doi: 10.1016/j.ifacol.2018.03.047.
[20] Y. Romasevych, V. Loveikin, and Y. Loveikin. Development of a PSO modification with varying cognitive term. 2022 IEEE 3rd KhPI Week on Advanced Technology, KhPI Week 2022 – Conference Proceedings, Kharkiv, Ukraine, 2022. doi: 10.1109/KhPIWeek57572.2022.9916413.
Go to article

Authors and Affiliations

Viacheslav Loveikin
1
ORCID: ORCID
Yuriy Romasevych
1
ORCID: ORCID
Andrii Loveilin
2
ORCID: ORCID
Mykola Korobko
1
ORCID: ORCID
Anastasia Liashko
1
ORCID: ORCID

  1. National University of Life and Environmental Sciences of Ukraine, Kyiv, Ukraine
  2. Taras Shevchenko National University of Kyiv, Ukraine
Download PDF Download RIS Download Bibtex

Abstract

The present paper is dedicated to presentation and energy verification of the methods of stabilization the strain energy by penalty coefficients. Verification of the methods is based on the consistency and ellipticity conditions to be satisfied by the finite elements. Three methods of stabilization are discussed. The first does not satisfy the above requirements. The second is consistent but cannot eliminate parasitic energy terms. The third method, proposed by the author, is based on the decomposition of the element stiffness matrix. The method can help to eliminate locking of the finite elements. For two-noded beam element with linear shape functions and exact integration a stabilized free of locking (and elliptical) element is received (equivalent to reduced integration element). Two plate finite elements are analyzed: four-noded rectangular element and DSG triangle. A new method of stabilization with the use of four independent parameters is proposed. The finite elements with this kind of stabilization satisfy the consistency condition. In the rectangular element it was not possible to eliminate one parasitic term of energy which appears during the procedure. For DSG triangle all parasitic terms of energy are eliminated. The penalty coefficients depends on the geometry of the triangle.

Go to article

Authors and Affiliations

W. Gilewski

This page uses 'cookies'. Learn more