Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 6
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Meloidogyne arenaria belongs to root-knot nematodes (RKNs) which constitute a group of highly polyphagous nematodes causing serious damages to many crop varieties. Maize ( Zea mays) is one of its main hosts. During plant response to RKN infection, many mechanisms are involved. Pathogenesis-related proteins (PRs), which present many functions and enzymatic activities, such as ribonucleases (RNases), antioxidative enzymes, or proteases are involved in these processes. The aim of this study was to describe changes in peroxidase and RNase activities induced in Z. mays during its response to M. arenaria infection. Moreover, proteins potentially responsible for peroxidase activity were indicated. RNase and peroxidase activities were tested on proteins extracted from roots of healthy plants, M. arenaria infected plants, and healthy plants mixed with M. arenaria juveniles, in native polyacrylamide (PAA) gels. Samples were collected from two varieties of maize at four time points. A selected fraction showing peroxidase activity was excised from the gel and analyzed using mass spectrometry (MS) to determine protein factors responsible for enzymatic activity. As a result, the analyzed varieties showed slight differences in their RNase and peroxidase activities. Higher activity was observed in the Tasty Sweet variety than in the Waza variety. There were no significant differences between healthy and infected plants in RNase activities at all time points. This was in contrast to peroxidase activity, which was the highest in M. arenaria-infected plants 15 days after inoculation. On the basis of protein identification in excised gel fractions using MS it can be assumed that mainly peroxidase 12 is responsible for the observed peroxidase activity. Moreover, peroxidase activity may be presented by glutathione-S-transferase as well.
Go to article

Bibliography


Bajaj K., Singh P., Mahajan R. 1985. Changes induced by Meloidogyne incognita in superoxide dismutase, peroxidase and polyphenol oxidase activity in tomato roots. Biochemie und Physiologie der Pflanzen 180: 543−546. DOI: https://doi.org/10.1016/S0015-3796(85)80102-5
Bariola P.A., Green P.J. 1997. Plant ribonucleases. p. 163−190. In: "Ribonucleases: Structures and Functions” (G. D’Alessio, J.F. Riordan, eds). Academic Press, USA. DOI: https://doi. org/10.1016/B978-012588945-2/50006-6
Bartling D., Radzio R., Steiner U., Weiler E.W. 1993. A glutathione S-transferase with glutathione-peroxidase activity from Arabidopsis thaliana: Molecular cloning and functional characterization. European Journal of Biochemistry 216: 579−586. DOI: https://doi.org/10.1111/j.1432-1033.1993.tb18177.x
Blank A., Sugiyama R., Dekker C.A. 1982. Activity staining of nucleolytic enzymes after sodium dodecyl sulfate-polyacrylamide gel electrophoresis: use of aqueous isopropanol to remove detergent from gels. Analytical Biochemistry 120: 267−275. DOI: https://doi.org/10.1016/0003-2697-(82)90347-5
Bradford M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72: 248−254. DOI: https://doi.org/10.1016/0003-2697-(76)90527-3
Christensen J.H., Bauw G., Welinder K.G., Van Montagu M., Boerjan W. 1998. Purification and characterization of peroxidases correlated with lignification in poplar xylem. Plant Physiology 118: 125−135. DOI: https://doi.org/10.1104/ pp.118.1.125
Edreva A. 2005. Pathogenesis-related proteins: research progress in the last 15 years. General and Applied Plant Physiology 31: 105−124.
Eisenback J.D., Triantaphyllou H.H. 1991. Root-knot nematodes: Meloidogyne species and races. p. 191−274. In: "Manual of Agricultural Nematology" (W.R. Nickle, ed.). CRC Press, USA. DOI: https://doi.org/10.1201/9781003066576
Elling A.A. 2013. Major emerging problems with minor Meloidogyne species. Phytopathology 103: 1092−1102. DOI: https://doi.org/10.1094/PHYTO-01-13-0019-RVW
Filipenko E., Kochetov A., Kanayama Y., Malinovsky V., Shumny V. 2013. PR-proteins with ribonuclease activity and plant resistance against pathogenic fungi. Russian Journal of Genetics: Applied Research 3: 474−480. DOI: https://doi.org/10.1134/S2079059713060026
Gheysen G., Fenoll C. 2002. Gene expression in nematode feeding sites. Annual Review of Phytopathology 40: 191−219. DOI: https://doi.org/10.1146/annurev.phyto.40.121201.093719
Hiraga S., Sasaki K., Ito H., Ohashi Y., Matsui H. 2001. A large family of class III plant peroxidases. Plant and Cell Physiology 42: 462−468. DOI: https://doi.org/10.1093/pcp/ pce061
Holbein J., Grundler F.M., Siddique S. 2016. Plant basal resistance to nematodes: an update. Journal of Experimental Botany 67: 2049−2061. DOI: https://doi.org/10.1093/jxb/ erw005
Hussey R. 1973. A comparison of methods of collecting inocula of Meloidogyne spp., including a new technique. Plant Disease Reporter 57: 1025−1028.
Jain D., Khurana J.P. 2018. Role of pathogenesis-related (PR) proteins in plant defense mechanism. p. 265−281. In: "Molecular Aspects of Plant-Pathogen Interaction." (A. Singh, I.K. Singh, eds.). Springer, Singapore. DOI: https://doi.org/10.1007/978-981-10-7371-7
Kyndt T., Nahar K., Haegeman A., De Vleesschauwer D., Höfte M., Gheysen G. 2012. Comparing systemic defencerelated gene expression changes upon migratory and sedentary nematode attack in rice. Plant Biology 14: 73−82. DOI: https://doi.org/10.1111/j.1438-8677.2011.00524.x
Mahantheshwara B., Nayak D., Patra M.K. 2019. Protein estimation through biochemical analysis in resistant and susceptible cultivars of cowpea against infection by root-knot nematode, Meloidogyne incognita. Journal of Entomology and Zoology Studies 7 (4): 1191−1193.
MlÝčkovß K., Luhovß L., Lebeda A., Mieslerovß B., Peč P. 2004. Reactive oxygen species generation and peroxidase activity during Oidium neolycopersici infection on Lycopersicon species. Plant Physiology and Biochemistry 42: 753−761. DOI: https://doi.org/10.1016/j.plaphy.2004.07.007
Mohanty K., Ganguly A., Dasgupta D. 1986. Development of peroxidase (EC 1.11. 1.7) activities in susceptible and resistant cultivars of cowpea inoculated with the root-knot nematode, Meloidogyne incognita. Indian Journal of Nematology 16: 252−256.
Mohsenzadeh S., Esmaeili M., Moosavi F., Shahrtash M., Saffari B., Mohabatkar H. 2011. Plant glutathione S-transferase classification, structure and evolution. African Journal of Biotechnology 10: 8160−8165. DOI: https://doi.org/10.5897/AJB11.1024
Przybylska A., Kornobis F., Obrępalska-Stęplowska A. 2018. Analysis of defense gene expression changes in susceptible and tolerant cultivars of maize (Zea mays) upon Meloidogyne arenaria infection. Physiological and Molecular Plant Pathology 103: 78−83. DOI: https://doi.org/10.1016/j.pmpp.2018.05.005
Przybylska A., Obrępalska-Stęplowska A. 2020. Plant defense responses in monocotyledonous and dicotyledonous host plants during root-knot nematode infection. Plant and Soil 451: 239–260. DOI: https://doi.org/10.1007/s11104-020-04533-0
Siddiqui Z., Husain S. 1992. Response of twenty chickpea cultivars to Meloidogyne incognita race 3. Nematologia Mediterranea 20: 33−36.
Singh N.K., Paz E., Kutsher Y., Reuveni M., Lers A. 2020. Tomato T2 ribonuclease LE is involved in the response to pathogens. Molecular Plant Pathology 21: 895−906. DOI: https:// doi.org/10.1111/mpp.12928
Veronico P., Paciolla C., Pomar F., De Leonardis S., García- -Ulloa A., Melillo M.T. 2018. Changes in lignin biosynthesis and monomer composition in response to benzothiadiazole and root-knot nematode Meloidogyne incognita infection in tomato. Journal of Plant Physiology 230: 40−50. DOI: https://doi.org/10.1016/j.jplph.2018.07.013
Go to article

Authors and Affiliations

Arnika Przybylska
1
ORCID: ORCID

  1. Department of Molecular Biology and Biotechnology, Institute of Plant Protection − National Research Institute, Poznań, Poland
Download PDF Download RIS Download Bibtex

Abstract

Now, the use of any medical device based on metals or alloys, especially intended for dentistry applications, is impossible without preclinical evaluation of its anticorrosion properties. Today, the use of stainless steels with AISI standardization, with predilection 316L and 321, are preferred for ergonomic reasons due to their high operational reliability and optimal mechanical properties for functionality over time. In this regard, 316L and 321 stainless steels are tested for comparison in the solution that simulates human saliva with different pH. Stainless steel samples were subjected to corrosion in Fusayama-Meyer and Carter-Brugirard saliva. In-situ electrochemical measurements were applied, such as the open circuit potential (OCP) and electrochemical impedance spectroscopy (EIS). The results show that the corrosion resistance of 316L is superior to 321 in saliva solution at both pH values.
Go to article

Authors and Affiliations

V. Neaga
1
L. Benea
1
ORCID: ORCID

  1. Competences Centre: Interfaces-Tribocorrosion and Electrochemical Systems (CC-ITES), Dunarea de Jos University of Galati, 47 Domneasca Street, RO-800008 Galati, Romania
Download PDF Download RIS Download Bibtex

Abstract

Concentration of Zn, Cu, Cd, Pb and Co have been determined in Antarctic water (South Shetland Islands) and in krill exoskeletons with the help of atomic absorption spectrophotometry. Concentrations of these metals both in sea-water and in krill exoskeleton are in order Zn > Cu > Cd > Ni > Pb > Co. Comparing concentrations of these metals in sea-water to their concentrations in krill exoskeleton, the factors have been calculated giving a list of metals in the order of krill chitin ability, which is Ni > Cu > Zn > Cd > Pb > Co accumulation. The highest accumulation factors for Ni and Cu point out to the special role played by these metals in krill life.

Go to article

Authors and Affiliations

Witold Neugebauer
Piotr Bykowski
Ewa Neugebauer
Download PDF Download RIS Download Bibtex

Abstract

Self-biting disease occurs in most farmed fur animals in the world. The mechanism and rapid detection method of this disease has not been reported. We applied bulked sergeant analysis (BSA) in combination with RAPD method to analyze a molecular genetic marker linked with self-biting trait in mink group. The molecular marker was converted into SCAR and loop-mediated isothermal amplification (LAMP) marker for rapid detection of this disease. A single RAPD marker A10 amplified a specific band of 1000bp in self-biting minks. The sequences of the bands exhibited 73% similarity to the Canis Brucella. SCAR and LAMP marker were designed for the specific fragment of RAPD marker A10 and validated in 30 self-biting minks and 30 healthy minks. c2 test showed difference (p<0.05) with SCAR and significant difference (p<0.01) with LAMP in the detection rate between the two groups, but LAMP method was more accurate than SCAR method. This indicated that LAMP can be used as a positive marker to detect self-biting disease in minks.
Go to article

Authors and Affiliations

Z.Y. Liu
S.S. Song
Z.S. Huo
X.C. Song
B. Cong
F.H. Yang
Download PDF Download RIS Download Bibtex

Abstract

The combination of the austempered ductile iron mechanical properties strongly depend on the parameters used on the austempering cycle. On this study, the influence of austempering time and austenitizing temperature on the properties of a ductile iron were evaluated. A metallic bath of Zamak at 380°C was used as an austempering mean. A set of ductile iron blocks were austenitized at 900°C for 90 minutes and submitted to different austempering times in order to determine the best combination of microstructural and mechanical properties. After the definition of the time of austempering, the reduction of the austenitizing temperature was evaluated. The best combination of properties was obtained with austenitizing at 860°C and austempering during 60 minutes.

Go to article

Authors and Affiliations

L. Pereira
M.R. Bellé
L.F. Seibel Júnior
W.M. Pasini
R.F. Do Amaral
V. Karlinski de Barcellos

This page uses 'cookies'. Learn more