Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The presence of noises in the vehicle cabin is an annoyance phenomenon which is significantly affected by the heating, ventilation, and air conditioning (HVAC) system. There are very limited studies reported on the specific type of noise characterisation and validation for both model and vehicle system levels. The present study developed a model of HVAC system that reflects the operation as in real vehicle, and the investigation of the HVAC components were carried out individually to determine which component contributes to the humming-type noise and vibration. The study was conducted under two conditions; idle speed of engine (850 rpm) and operating condition (850–1400 rpm). A ixed blower speed and fullface setting were applied throughout the experimental process. Three different sensors were used for the experiment, which are: accelerometer, tachometer, and microphone. From the results, the compressor and AC pipe components have contributed the most in generating the noise and vibration for both the model and vehicle systems. The findings also highlight that the humming-type noise and vibration were produced in the same operating frequency of 300–400 Hz and 100–300 Hz for idle and operating conditions, respectively, and this result was validated for both model and vehicle system levels.
Go to article

Authors and Affiliations

Mohd Hafiz Abdul Satar
1
Ahmad Zhafran Ahmad Mazlan
1
Muhd Hidayat Hamdan
1
Mohd Syazwan Md Isa
1
Muhd Abdul Rahman Paiman
2
Mohd Zukhairi Abd Ghapar
2

  1. The Vibration Lab, School of Mechanical Engineering, Universiti Sains Malaysia 14300 Nibong Tebal, Penang, Malaysia
  2. Testing & Development, Vehicle Development & Engineering, Proton Holdings Berhad, 40000 Shah Alam, Selangor, Malaysia
Download PDF Download RIS Download Bibtex

Abstract

In this study, β-galactosidase enzyme from Kluyveromyces fragilis was immobilised on a commercial polyethersulfone membrane surface, 10 kDa cut-off. An integrated process, concerning the simultaneous hydrolysis-ultrafiltration of whey lactose was studied and working conditions have been fixed at 55°C and pH 6.9, the same conditions that are used for the industrial process of protein concentration. For the immobilisation, best results were obtained using 5% (v/v) of glutaraldehyde solution and 0.03 M galactose; the total activity recovery coefficient (TARC) was 44.2%. The amount of immobilised enzyme was 12.49 mg with a total activity of 86.3 LAU at 37°C, using 5% (w/v) lactose solution in phosphate buffer (100 mM pH 6.9).

The stability of the immobilised enzyme was approximately 585 fold higher in comparison with the stability of free enzyme. Multipoint covalent immobilisation improves the stability of the enzyme, thereby enhancing the decision to use the membrane as a filtering element and support for the enzyme immobilisation.

Go to article

Authors and Affiliations

Silvina A. Regenhardt
Enrique J. Mammarella
Amelia C. Rubiolo

This page uses 'cookies'. Learn more