Search results

Filters

  • Journals
  • Autorzy
  • Słowa kluczowe
  • Data
  • Typ

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The rapid, high increase in production costs and prices of mineral fertilizers leads to a reduction in their use by farmers, while fertilizer manufacturers consider the use of alternative raw materials and reducing the energy consumption of fertilizer production processes. Given these circumstances, special attention is warranted for suspension fertilizers. The manufacturing of suspension fertilizers is simplified and less energy intensive in comparison with solid fertilizers. This is achieved by omitting certain production stages such as granulation, drying, sifting, which usually contribute to more than half of the production costs. This paper presents the production procedure of suspension fertilizers tailored for cabbage cultivation, utilizing alternative raw materials such as sewage sludge ash and poultry litter ash. The final products are thoroughly characterized. The obtained fertilizers were rich in main nutrients (ranging from 23.38% to 30.60% NPK) as along with secondary nutrients and micronutrients. Moreover, they adhere to the stipulated standards concerning heavy metal content as outlined in the European Fertilizer Regulation. A distribution analysis has showed that suspension fertilizers contain nutrients in both liquid and solid phases. This arrangement facilitates their easy availability for plants and subsequent release upon dissolution in soil conditions. To assess process consistency, the production of the most promising fertilizer was upscaled. A preliminary technological and economic analysis was also conducted. The method of producing suspension fertilizers using alternative raw materials is a simple waste management solution offering nutrient recycling with the principles of circular economy. This approach not only encourages nutrient recycling but also curtails reliance on imported raw materials.
Go to article

Bibliography

  1. Biskupski, A., Zdunek, A., Malinowski, P. & Borowik, M. (2015). Utilization of industrial wastes in fertilizer industry, Chemik, 69, pp. 568-571.
  2. Bogusz, P. (2022a). The Possibility of Using Waste Phosphates from the Production of Polyols for Fertilizing Purposes, Molecules, 27, 17 pp. 5632. DOI:10.3390/molecules27175632
  3. Bogusz, P., Rusek, P. & Brodowska, M.S. (2022b). Suspension Fertilizers Based on waste Phosphates from the Production of Polyols, Molecules, 27, pp. 7916. DOI:10.3390/molecules27227916
  4. Bogusz, P., Rusek, P. & Brodowska, M.S. (2021). Suspension Fertilizers: How to Reconcile Sustainable Fertilization and Environmental Protection, Agriculture, 11, 10, pp. 1008. DOI:10.3390/agriculture11101008
  5. Coolong, T., Cassity-Duffey, K. & da Silva, A.L.B.R. (2022). Influence of Nitrogen Rate, Fertilizer Type, and Application Method on Cabbage Yield and Nutrient Concentrations, HortTechnology, 32, pp. 134-139. DOI:10.21273/HORTTECH04982-21
  6. Das, D. & Mandal, M. (2015). Advanced Technology of Fertilizer Uses for Crop Production Advanced Technology of Fertilizer Uses for Crop Production. [In:] Sihna S, Pant K.K. & Bajpai, S. (eds) Fertilizer Technology-I Synthesis, 1st edn. Studium Press, LLC, USA, pp. 101-150.
  7. EU (2019). Regulation (EU) 2019/1009 of the European Parliament and of the Council of 5 June 2019 laying down rules on the making available on the market of EU fertilizing products and amending Regulations (EC) No 1069/2009 and (EC) No 1107/2009 and repealing Regulation (EC) No 2003/2003. European Parliament and of the Council.
  8. Górecki, H. & Hoffmann, J. (1995). Nawozy zawiesinowe-nowa generacja nawozów rolniczych i ogrodniczych, Przemysł Chemiczny, 74, pp. 87-90.
  9. Graphical Research (2022). Fertilizer Market Size & Share | North America, Europe, & APAC Industry Forecasts 2028.
  10. Hauck, D., Lohr, D., Meinken, E. & Schmidhalter, U. (2021). Plant availability of secondary phosphates depending on pH in a peat-based growing medium, Acta Horticulturae, 1305, pp. 437-442. DOI:10.17660/ActaHortic.2021.1305.57
  11. Jones, K. & Nti, F. (2022). Impacts and Repercussions of Price Increases on the Global Fertilizer Market, USDA Foreign Agricultural Service.
  12. Kebrom, T.H., Woldesenbet, S., Bayabil, H.K., Garcia, M., Gao, M., Ampim, P., Awal, R. & Fares, A. (2019). Evaluation of phytotoxicity of three organic amendments to collard greens using the seed germination bioassay, Environ. Sci. Pollut. Res., 26, pp. 5454–5462. DOI:10.1007/s11356-018-3928-4
  13. Kominko, H., Gorazda, K., Wzorek, Z. & Wojtas, K. (2018). Sustainable Management of Sewage Sludge for the Production of Organo-Mineral Fertilizers, Waste Biomass Valor, 9, 10, pp. 1817-1826. DOI:10.1007/s12649-017-9942-9
  14. Kominko, H., Gorazda, K. & Wzorek, Z. (2021). Formulation and evaluation of organo-mineral fertilizers based on sewage sludge optimized for maize and sunflower crops, Waste Manage, 136, pp. 57-66. DOI:10.1016/j.wasman.2021.09.040
  15. Luyckx, L. & Van Caneghem, J. (2021). Recovery of phosphorus from sewage sludge ash: Influence of incineration temperature on ash mineralogy and related phosphorus and heavy metal extraction, Journal of Environmental Chemical Engineering, 9, 6, pp. 106471. DOI:10.1016/j.jece.2021.106471
  16. Malinowski, P., Olech, M., Sas, J., Wantuch, W., Biskupski, A., Urbańczyk, L., Borowik, M. & Kotowicz, J. (2010). Production of compound mineral fertilizers as a method of utilization of waste products in chemical company Alwernia S.A., PJCT, 12, pp. 6-9. DOI:10.2478/v10026-010-0024-z
  17. Melia, P.M., Cundy, A.B., Sohi, S.P., Hooda, P.S. & Busquets, R. (2017). Trends in the re-covery of phosphorus in bioavailable forms from wastewater, Chemosphere, 186, pp. 381–395. DOI:10.1016/j.chemosphere.2017.07.089
  18. Meng, X., Huang, Q., Xu, J., Gao, H. & Yan, J. (2019). A review of phosphorus recovery from different thermal treatment products of sewage sludge, Waste Dispos. Sustain. Energy, 1, pp. 99-115. DOI:10.1007/s42768-019-00007-x
  19. Mikła, D., Hoffmann, K. & Hoffmann, J. (2007). Production of suspension fertilizers as a potential way of managing industrial waste, PJCT, 9, pp. 9-11. DOI:10.2478/v10026-007-0043-6
  20. Müller-Stöver, D., Thompson, R., Lu, C., Thomsen, T.P., Glæsner, N. & Bruun, S. (2021). Increasing plant phosphorus availability in thermally treated sewage sludge by post-process oxidation and particle size management, Waste Manage, 120, pp. 716-724. DOI:10.1016/j.wasman.2020.10.034
  21. Raymond, N.S., Müller Stöver, D., Richardson, A.E., Nielsen, H.H. & Stoumann Jensen, L. (2019). Biotic strategies to increase plant availability of sewage sludge ash phosphorus, J. Plant Nutr. Soil Sci, 182, pp. 175-186. DOI:10.1002/jpln.201800154
  22. Rene, E.R., Ge, J., Kumar, G., Singh, R.P. & Varjani, S. (2020). Resource recovery from wastewater, solid waste, and waste gas: engineering and management aspects, Environmental Science and Pollution Research, 27, pp. 17435-17437. DOI:10.1007/s11356-020-08802-4
  23. Rolewicz, M., Rusek, P., Mikos-Szymańska, M., Cichy, B. & Dawidowicz, M. (2016). Obtaining of Suspension Fertilizers from Incinerated Sewage Sludge Ashes (ISSA) by a Method of Solubilization of Phosphorus Compounds by Bacillus megaterium Bacteria, Waste Biomass Valoris, 7, pp. 871-877. DOI:10.1007/s12649-016-9618-x
  24. Rusek, P., Biskupski, A. & Borowik, M. (2009a). Studies on manufacturing suspension ferilizers on the basis of waste phosphates from polyether production, Przemysl Chemiczny, 88, pp. 563-564.
  25. Rusek, P., Biskupski, A., Borowik, M. & Hoffmann, J. (2009b). Development of the technology for manufacturing suspension fertilizers, Przemysl Chemiczny, 88, pp. 1332-1335.
  26. Smol, M., Kulczycka, J., Lelek. Ł., Gorazda, K. & Wzorek, Z., (2020). Life Cycle Assessment (LCA) of the integrated technology for the phosphorus recovery from sewage sludge ash (SSA) and fertilizers production, Arch. Environ. Protect., 46, 2, pp. 42-52. DOI:10.24425/aep.2020.133473
  27. Triratanaprapunta, P., Osotsapar, Y., Sethpakdee, R. & Amkha, S. (2014). The physical property changes during storage of 25-7-7 analysis grade of suspension fertilizer processed by Luxen's method, Modern Applied Science, 8, pp. 61-69. DOI:10.5539/mas.v8n6p61
  28. Zalewski, A. & Piwowar, A. (2018). The global market of mineral fertilizers, including changes in the prices of raw materials and direct energy carriers. Instytut Ekonomiki Rolnictwa i Gospodarki Żywnościowej - Państwowy Instytut Badawczy, Warszawa. (in Polish). DOI:10.22004/ag.econ.164832
  29. Zhou, X., Xu, D., Yan, Z., Zhang, Z. & Wang, X. (2022). Production of new fertilizers by combining distiller's grains waste and wet-process phosphoric acid: Synthesis, characterization, mechanisms and application, Journal of Cleaner Production, 367, pp. 133081. DOI:10.1016/j.jclepro.2022.133081
Go to article

Authors and Affiliations

Katarzyna Gorazda
1
Halyna Kominko
1
Anna K. Nowak
1
Adam Wiśniak
1

  1. Cracow University of Technology, Poland
Download PDF Download RIS Download Bibtex

Abstract

Warna and Pengilon Lakes are very close to each other and connected with the sill, a famous tourist destination in the Dieng Plateau Java. Land-use changes are the main problem that affected the lakes. The conversion of forest into an agricultural area had induced erosion and increased the volume of nutrients discharged to the lake due to high use of fertilisers in potatoes farms. In the dry seasons, water from those lakes was pumped to irrigate agricultural land. This study aimed to determine the water quality of Warna and Pengilon Lakes based on physical, chemical parameters, and phytoplankton communities. Water samples were collected from 4 sites at each lake to analyse biological oxygen demand ( BOD), chemical oxygen demand ( COD), ammonia, nitrate, nitrite, and total nitrogen ( TN). Temperature, pH, dissolved oxygen ( DO), turbidity, and conductivity ( EC) were measured in-situ. During this research, turbidity and BOD in Warna and Pengilon Lakes exceeded the Indonesian water quality standard. Based on the STORET method, the water quality of Lake Warna was assessed as highly polluted for all classes. However, based on the pollution index (PI), Lake Warna was slightly to moderately polluted, as well as the saprobic index was in the β-mesosaprobic phase. Based on the species diversity index of phytoplankton, both Warna and Pengilon Lakes were moderately polluted. The long-term monitoring studies are necessary as an early warning sign of water quality degradation. Therefore, they provide insight into the overall ecological condition of the lake and can be used as a basis for developing suitable lake management.
Go to article

Authors and Affiliations

Tri Retnaningsih Soeprobowati
1 2
ORCID: ORCID
Nurul Layalil Addadiyah
1
Riche Hariyati
1
ORCID: ORCID
Jumari Jumari
1
ORCID: ORCID

  1. Diponegoro University, Faculty of Science and Mathematics, Department of Biology, Jl. Prof. Soedarto, SH. Street, Tembalang, Semarang, 50275, Indonesia
  2. Universitas Diponegoro, School of Postgraduate Studies, Imam Bardjo Street Number 3-5, Semarang, 50241, Indonesia

This page uses 'cookies'. Learn more