Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

This paper describes results of tensile mechanical strength testing of two types of composite suspension line insulators from two manufacturers. In order to take into account the operation of composite insulators in overhead transmission lines with high-temperature low-sag (HTLS) conductors, the testing of their static and fatigue strength was performed at both ambient and elevated temperatures. The results showed that the static mechanical strength of composite insulators decreased with an increase in the temperature of the lower end fitting of the insulator, and proved that it followed a third-degree polynomial function. Calculations performed demonstrated that a significant cause of reduction in strength was the increase in the radial stress following the temperature increase in the crimped glassepoxy resin core of the insulator. The results of the fatigue strength testing demonstrated that the increase in the temperature of the lower end fitting of the insulator up to 85°C degree had a little effect on the fatigue strength of the tested composite insulators.
Go to article

Authors and Affiliations

Jerzy Bielecki
1
ORCID: ORCID
Piotr Kotowski
2
Jacek Wańkowicz
1
ORCID: ORCID

  1. Institute of Power Engineering, ul. Mory 8, 01-330 Warsaw, Poland
  2. 2Wroclaw University of Technology, ul. Smoluchowskiego 25, 50-370 Wroclaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

Types of wind storms in Poland and examples of economic damage, threats to human life and health caused by two extreme wind events are presented. Then, a house with the roof blown-off during the derecho wind storm in Poland on August 11-12, 2017, is considered. Based on the rafter framing of the house, i.e. wooden roof structure elements and roof covered, the weight of the roof is calculated. Two cases of the strong connection between rafter plates and knee walls are estimated. With the estimation of connection strength between rafter plates and knee walls, it was possible to calculate the total force required to blow-off the roof of the house. Next, an aerodynamic force acting on the house is calculated using pressure coefficients for a low-rise house with a gable roof. The pressure coefficients were taken from the Tokyo Polytechnic University aerodynamic database. The aerodynamic force acting on the roof blown-off was calculated for a low-rise building with a gable roof for similar ratios for length, width, and height. Three wind directions, for the unknown orientation of the building, were considered, i.e. the wind direction perpendicular, parallel, and oblique to the gable wall. By comparison, the aerodynamic force with the total force required to blow-off the roof of the house, it was possible to calculate the critical wind speed needed for the roof blown-off. This wind speed is much bigger than measured by meteorological stations on the path of the derecho.

Go to article

Authors and Affiliations

Tadeusz Chmielewski
Barbara Kaleta
Henryk Nowak

This page uses 'cookies'. Learn more