Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

This paper focused on a study concerned with the motion of platforms at loading stations during truck changing in Trucklift slope hoisting system built in Jaeryong open-pit iron mine, DPR of Korea. The motion of platform in Trucklift slope hoisting system produces undesirable effect on truck changing. To analyze the motion of platform during truck changing, we built the dynamic model in ADAMS environment and control system in MATLAB/Simulink. Simulation results indicate that the normal truck changing can be realized without arresters at loading stations by a reasonable structural design of platforms and loading stations.
Go to article

Bibliography

[1] A.A. Kuleshov, RU Patent, 2168630 C1, filed June 10 (2001).
[2] W . Peter, WO, 2008/138055 A1, filed Nov. 20 (2008).
[3] J.D. Tarasov, RU Patent, 2284958 C1, filed Oct. 10 (2006).
[4] http://www.siemagtecberg.com/infocentre/technical-information/ti_27-trucklift.html, accessed: 05.02.2017
[5] M. Schmid, Tire modeling for multibody dynamics applications. Technical Report, sbel.wisc.edu, University of Wisconsin‐Madison, 5-14 (2011)
[6] X.B. Ning, C.L. Zhao, J.H. Shen, Procedia Engineering 16, 333-341 (2011).
[7] X.Q. Zhang, B. Yang, C. Yang, G.N. Xu, Procedia Engineering 37, 120-124 (2012).
[8] P.G. Adamczyk, D. Gorsich, G. Hudas, J. Overholt, Proceedings of SPIE 5083, 63-74 (2003).
Go to article

Authors and Affiliations

Tok Hyong Han
1
ORCID: ORCID
Kwang Hyok Kim
1
ORCID: ORCID
Un Chol Han
2
ORCID: ORCID
Kwang Myong Li
2
ORCID: ORCID

  1. Kim Chaek University of Technology, Faculty of Mining Engineering, Pyongyang, Democratic People’s Republic of Korea
  2. Kim Chaek University of Technology, School of Science and Engineering, Pyongyang, Democratic People’s Republic of Korea
Download PDF Download RIS Download Bibtex

Abstract

The most important task in tests of resistance of aircraft structures to the terorist threats is to determine the vulnerability of thin-walled structures to the blast wave load. For obvious reasons, full-scale experimental investigations are carried out exceptionally. In such cases, numerical simulations are very important. They make it possible to tune model parameters, yielding proper correlation with experimental data. Basing on preliminary numerical analyses - experiment can be planned properly. The paper presents some results of dynamic simulations of finite element (FE) models of a medium-size aircraft fuselage. Modeling of C4 detonation is also discussed. Characteristics of the materials used in FE calculations were obtained experimentally. The paper describes also the investigation of sensitivity of results of an explicit dynamic study to FE model parameters in a typical fluid-structure interaction (FSI) problem (detonation of a C4 explosive charge). Three cases of extent of the Eulerian mesh (the domain which contains air and a charge) were examined. Studies have shown very strong sensitivity of the results to chosen numerical models of materials, formulations of elements, assumed parameters etc. Studies confirm very strong necessity of the correlation of analysis results with experimental data. Without such a correlation, it is difficult to talk about the validation of results obtained from "explicit" codes.

Go to article

Authors and Affiliations

Adam Dacko
Jacek Toczyski

This page uses 'cookies'. Learn more