Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

This article focuses on the problem of rituality in contemporary political discourse. It describes the specificity of manifestations of rituality in political discourse on the example of the Russian variant. The material for research is served by the official public texts of utterances made by V.V. Zhirinovsky published in the party newspapers of the Liberal Democratic Party of Russia in year 2021. The study was carried out using discourse analysis. In the theoretical part definitions of ambiguous terms are given, which undoubtedly include discourse, political discourse, and ritual. Their accepted definitions and concepts are indicated. Observations are made on the linguistic forms of ritual expression in politics, which are mainly associated with the performance of a specific political function. It has been proven that rituality in political discourse is opposed to informativeness and manifested in the fulfilment of the assigned specific political role and tasks in society.
Go to article

Authors and Affiliations

Gabriela Dudek-Waligóra
1
ORCID: ORCID

  1. Kraków, Uniwersytet Jagielloński
Download PDF Download RIS Download Bibtex

Abstract

This article presents the results of experimental studies aimed at identifying the forces and acceleration during the riding and braking action of a suspended monorail. The tests were conducted under in situ conditions, in a dip-heading “B” ZG SILTECH in Zabrze. The paper also discusses a test stand, a metering system, and presents the impact of changes in speed on forces in slings of the suspended route. The measurements of selected parameters were performed for three variants: the route, the emergency haulage braking and the braking trolley set braking. The results include waveforms of forces in route slings, and acceleration values acting on the operator and transported load.

Go to article

Authors and Affiliations

Jarosław Andrzej Tokarczyk
Marek Rotkegel
ORCID: ORCID
Andrzej Pytlik
Andrzej Niedworok
Download PDF Download RIS Download Bibtex

Abstract

To reduce the influence of the disorderly charging of electric vehicles (EVs) on the grid load, the EV charging load and charging mode are studied in this paper. First, the distribution of EV charging capacity and state of charge (SOC) feature quantity are analyzed, and their probability density function is solved. It is verified that both EV charging capacity and SOC obey the skew-normal distribution. Second, considering the space-time distribution characteristics of the EV charging load, a method for charging load prediction based on a wavelet neural network is proposed, and compared with the traditional BP neural network, the prediction results show that the error of the wavelet neural network is smaller, and the effectiveness of the wavelet neural network prediction is verified. The optimization objective function with the lowest user costs is established, and the constraint conditions are determined, so the orderly charging behavior is simulated by the Monte Carlo method. Finally, the influence of charging mode optimization on power grid operation is analyzed, and the result shows that the effectiveness of the charging optimization model is verified.
Go to article

Bibliography

[1] Zang Haixiang, Fu Yuting, Chen Ming, Shen Haiping, Miao Liheng, Zhang Side, Wei Zhinong, Sun Guoqiang, Dynamic planning of EV charging stations based on improved adaptive genetic algorithm, Electric Power Automation Equipment, vol. 40, no. 01, pp. 163–170 (2020).
[2] YI T., Zhang C., Lin T. et al., Research on the spatial-temporal distribution of electric vehicle charging load demand, A case study in China, Journal of Cleaner Production, vol. 242, (2020), DOI: 10.1016/j.jclepro.2019.118457.
[3] Xiao Hao, Pei Wei, Kong Li, Multi-Objective Optimization Scheduling Method for Active Distribution Network with Large Scale Electric Vehicles, Transactions of China Electrotechnical Society, vol. 32, no. S2, pp. 179–189 (2017).
[4] Chen Z., Zhang Z., Zhao J. et al., An analysis of the charging characteristics of electric vehicles based on measured data and its application, IEEE Access, pp. 24475–24487 (2018).
[5] Hu Z., Zhank K., Zhank H., Pricing mechanisms design for guiding electric vehicle charging to fill load valley, Applied Energy, vol. 178, pp. 155–163 (2016).
[6] Xiong Junjie, Liu Tao, He Hao, Huang Yangqi, Zhang Weizhe, Research on electric vehicle charging strategy based on particle swarm optimization, Jiangxi Electric Power, vol. 42, no. 08, pp. 15–20 (2018).
[7] Chen Zhong, Liu Yi, Zhou Tao, Xing Qiang, Du Puliang, Optimal time-of-use charging pricing strategy of EVs considering mobile characteristics, Electric Power Automation Equipment, vol. 40, no. 04, pp. 96–102 (2020).
[8] Li Shichun,Wang Yang, Zhong Hao, Shu Zhengyu, Charge and discharge strategy of the combination optimization of electric private car, taxi group with aim at strengthening peak regulation, Renewable Energy Resources, vol. 38, no. 06, pp. 824–830 (2020).
[9] Zhang Z, Donk K., Pang X., Research on the EV charging load estimation and mode optimization methods, Archives of Electrical Engineering, vol. 68, no. 04, pp. 831–842 (2019).
[10] Hu Dequan, Guo Chunlin, Yu Qinbo, Yang Xiaoyan, Bi-Level Optimization Strategy of Electric Vehicle Charging Based on Electricity Price Guide, Electric Power Construction, vol. 39, no. 01, pp. 48–53 (2018).
[11] Hadian E., Akbari H., Farzinfar M., Saeed S., Optimal Allocation of Electric Vehicle Charging Stations with Adopted Smart Charging/Discharging Schedule, IEEE Access (2020).
[12] Mao T., Lau W., Shum C. et al., A regulation policy of EV discharging price for demand scheduling, IEEE Transactions on Power Systems, vol. 33, no. 02, pp. 1275–1288 (2017).
[13] Cao Y., Tang S., Li C. et al., An optimized EV charging model considering TOU price and SOC curve, IEEE Transactions on Smart Grid, vol. 3, no. 01, pp. 388–393 (2011).
[14] Zhang Y., You P., Cai L., Optimal charging scheduling by pricing for EV charging station with dual charging modes, IEEE Transactions on Intelligent Transportation Systems, vol. 20, no. 09, pp. 3386–3396 (2018).
[15] Cui Jindong, Luo Wenda, Zhou Niancheng, Research on Pricing Model and Strategy of Electric Vehicle Charging and Discharging Based on Multi View, Proceedings of the CSEE, vol. 38, no. 15, pp. 4438–4450+4644 (2018).
[16] Faddel S., Elsayed A.T., Mohammed O.A., Bilayer Multi-Objective Optimal Allocation and Sizing of Electric Vehicle Parking Garage, IEEE Transactions on Industry Applications, vol. 54, no. 3, pp. 1992–2001 (2018).
[17] Moghaddam Z., Ahmad I., Habibi D., Phung Q.V., Smart Charging Strategy for Electric Vehicle Charging Stations, IEEE Transactions on Transportation Electrification, vol. 4, no. 1, pp. 76–88 (2018).
[18] Han Gangtuan, Cao Yantao, Construction of planning system for electric vehicle charging infrastructure, Urban and Rural Development, vol. 45, no. 9, pp. 3945–3948 (2016).
[19] Xia Yunyun, Wen Shangsheng, Fang Fang, Reliability Assessment of LED Based on Kolmogorov- Smirnov Check, Acta Photonica Sinica, vol. 45, no. 09, pp. 26–31 (2016).
[20] Zhang Yi, Lu Fenghu, The Approximate Empirical Bayesian Estimation of Kurtosis and Skewness Coefficient, Journal of Jiangxi Normal University (Natural Science), vol. 40, no. 04, pp. 358–362 (2016).
[21] Tao He, Liu Wei, Fu Jingyuan, Lognormal distribution reliability model and its application, Statistics and Decision, vol. 35, no. 03, pp. 89–92 (2019).
[22] Zhao Daoli, Gu Weihao, Feng Yaping, Short time traffic flow prediction based on wavelet neural network, Microcomputer and Its Applications, vol. 36, no. 23, pp. 80–83 (2017).
[23] Yao Ronghuan, Data center KPI prediction based on wavelet neural network, Application of Electronic Technique, vol. 45, no. 06, pp. 46–49+53 (2019).
[24] Li Guoqing, Liu Zhao, Jin Guobin, Quan Ran, Ultra Short-term Power Load Forecasting Based on Randomly Distributive Embedded Framework and BP Neural Network, Power System Technology, vol. 44, no. 2, pp. 437–445 (2020).
[25] Tang Zhenhao, Zhao Gengnan, Cao Shengxian, Zhao Bo, Very Short-term Wind Direction Prediction Via Self-tuning Wavelet Long-short Term Memory Neural Network, Proceedings of the CSEE, vol. 39, no.15, pp. 4459–4468 (2019).
[26] Zhu Lulu, The Monte Carlo method and application, MFA Thesis, Faculty of Mathematics and Statistics, Central China Normal University, Wuhan (2014).
[27] Chen Rongjun, He Yongxiu, Chen Fenkai, Dong Mingyu, Li Dezhi, Guangfengtao, Long-term Daily Load Forecast of Electric Vehicle Based on System Dynamics and Monte Carlo Simulation, Electric Power, vol. 51, no. 09, pp. 126–134 (2018).
Go to article

Authors and Affiliations

Zhiyan Zhang
1
Hang Shi
1
Ruihong Zhu
1
Hongfei Zhao
2
Yingjie Zhu
3

  1. College of Electrical Information Engineering, Zhengzhou University of Light Industry, China
  2. State Grid Jiangsu Electric Power Co., Ltd. Maintenance Branch Company, China
  3. Nanjing Electric Power Design Institute Co., Ltd. China

This page uses 'cookies'. Learn more