Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Friction stir welding (FSW) currently contributes a significant joining process for welding aluminium, magnesium, and other metals in which no molten or liquid state were involved. It is well known that aluminium alloys are more effective, promising for different applications light weight, strength and low cost. This study aims to determine how such tools geometry and tool speed can be related to dissimilar material in the joining process. Specifically, it investigates whether the distribution of the weld zone particularly between tool pin profile to rotational speed. In this context, the influence of tool pin profile and tool rotational speed in relation to the mechanical properties and microstructure of friction stir welded. The aim of this study is also to test the hypothesis that better mixing between dissimilar metals at higher tool rotational speed along the weld path. Three different tool profiles were configured with AA5083 and AA7075. During welding, notable presence of various types of defects such as voids and wormholes in the weld region. The results of this work showed that the tool pin profile and weld parameter are significant in determining mechanical properties at different tool rotational speed. The highest tensile strength achieved was about 263 MPa and the defectfree joint was obtained by using the threaded tapered cylindrical pin tool at a rotational speed of 800 rpm. These findings indicate that different tool profiles influence differently on the formation of defects at welds. On this basis, the tool geometry should be considered when designing experimental friction stir welded joint.
Go to article

Authors and Affiliations

M.H. Azmi
1
ORCID: ORCID
M.Z. Hasnol
1
ORCID: ORCID
M.F.A. Zaharuddin
1
ORCID: ORCID
S. Sharif
1
ORCID: ORCID
S. Rhee
2
ORCID: ORCID

  1. Universiti Teknologi Malaysia, School of Mechanical Engineering, Faculty of Engineering, 81310 Johor Bahru Johor, Malaysia
  2. Hanyang University, Department of Mechanical Engineering, 17 Haengdang-dong, Seongdong-gu, Seoul 133-791, Korea
Download PDF Download RIS Download Bibtex

Abstract

Unintentional islanding detection is one the mandatory criterion that must be met by PV inverters before connecting them into the grid. Acceptable time for inverter for islanding detection is less than 2 seconds. In this paper voltage parameters after islanding occurrence and before turning off the inverter are analyzed. In order to simulate islanding state and perform measurements the testing system was build. Three different commercial PV inverters were tested. Measured signals were used to calculate voltage envelope, phasor, frequency and ROCOF. Collected data proved to be helpful to compere different inverters.
Go to article

Bibliography

[1] S. Barczentewicz, A Bień, K. Duda , „The use of PMU data for detecting and monitoring selected electromagnetic disturbances”, International Journal od Electronics and Telecommunication. 2020, https://doi.org/10.24425/ijet.2020.134040
[2] IEEE Standard for Synchrophasor Measurements for Power Systems—Amendment 1: Modification of Selected Performance Requirements, IEEE Standard C37.118.1a, Apr. 2014.
[3] International Standard Synchrophasor for power systems – Measurements, IEC/IEEE 60255-118-1, Edition 1.0, Dec. 2018.
[4] G. A. Dileep, “Survey on smart grid technologies and applications”, Renewable Energy, vol. 146, pp. 2589-2625, 2020, https://doi.org/10.1016/j.renene.2019.08.092
[5] S. Barczentewicz, T. Lerch, A. Bień, K. Duda, “Laboratory Evaluation of a Phasor-Based Islanding Detection Method”. Energies. 2021; 14(7):1953. https://doi.org/10.3390/en14071953
[6] IEEE 15471-2020 „Standard Conformance Test Procedures for Equipment Interconnecting Distributed Energy Resources with Electric Power Systems and Associated Interfaces”
[7] S. Raza, H. Arof, H. Mokhlis, H. Mohamad, H. Azil Illias, “Passive islanding detection technique for synchronous generators based on performance ranking of different passive parameters”. IET Gener. Transm. Distrib. 2017, 11, 4175–4183, https://doi.org/10.1049/iet-gtd.2016.0806
[8] Z. Lin, T. Xia, Y. Ye, Y. Zhang, L. Chen, Y. Liu, K. Tomsovic, T. Bilke, F. Wen, “Application of wide area measurement systems to islanding detection of bulk power systems.” IEEE Trans. Power Syst. 2013, 28, 2006–2015, https://doi.org/10.1109/TPWRS.2013.2250531
[9] S.I. Jang, K.H. Kim, “An islanding detection method for distributed generations using voltage unbalance and total harminic distrotion of current.” IEEE Trans. Power Deliv. 2004, 19, 745–752, https://doi.org/10.1109/TPWRD.2003.822964
[10] R. Teodorescu, M. Liserre, P. Rodriguez, “Grid Converters for Photovoltaic and Wind Power System” John Wiley & Sons, Ltd: Chichester, West Sussex, UK; 2011; pp. 93–96
[11] S. Murugesan, M. Venkatakirthiga, “Active Unintentional Islanding Detection Method for Multiple PMSG based DGs.” IEEE Trans. Ind. Appl. 2020, 56, 4700–4708, https://doi.org/10.1109/TIA.2020.3001504
[12] S. Murugesan, V. Murali, “Hybrid Analyzing Technique Based Active Islanding Detection for Multiple DGs.” IEEE Trans. Ind. Inform. 2019, 15, 1311–1320, https://doi.org/10.1109/TII.2018.2846025
[13] D. Sivadas, K. Vasudevan, “An Active Islanding Detection Strategy with Zero Non detection Zone for Operation in Single and Multiple Inverter Mode Using GPS Synchronized Pattern.” IEEE Trans. Ind. Electron. 2020, 67, 5554–5564, https://doi.org/10.1109/TIE.2019.2931231
[14] M. Ropp, E. Aaker, K. Haigh, J. Sabbah, “Using power line carrier communication to prevent islanding”. IEEE Photovolt. Spec. Conf. 2002, 1675–1678, https://doi.org/10.1109/PVSC.2000.916224
[15] X. Wilson, Z. Guibin, L. Chun, W. Wencong, W. Guangzhu, K. A Jacek, “Power line signaling based technique for anti-islanding protection of distributed generators-Part I: Sheme and analysis.”, IEEE Trans. Power Deliv. 2007, 22, 1758–1766, https://doi.org/10.1109/TPWRD.2007.899618
[16] Z. Ye, R. Walling, L. Garces, R. Zhou, L. Li, T. Wang, “Study and Development of Anti-Islanding Control. for Grid-Connected Inverters”; Nat. Renew. Energy Lab.: Golden, CO, USA, May 2004, NREL/ SR-560-36243.
[17] S. Katyara, A. Hashmani, B.S. Chowdhary, H.B. Musavi, A. Aleem, F.A. Chachar, M.A. Shah, “Wireless Networks for Voltage Stability Analysis and Anti-islanding Protection of Smart Grid System.” Wirel. Pers. Commun. 2020, 1–18, https://doi.org/10.1007/s11277-020-07432-w
[18] K. Duda, T.P. Zieliński, S. Barczentewicz, “Perfectly Flat-Top and Equiripple Flat-Top Cosine Windows”, IEEE Trans. Instrum. Meas. 2016, 65, 1558–1567, https://doi.org/10.1109/TIM.2016.2534398
[19] K. Duda, T.P. Zieliński, “FIR Filters Compliant with the IEEE Standard for M Class PMU”. Metrol. Meas. Syst. 2016, 23, 623–636, https://doi.org/10.1515/mms-2016-0055

Go to article

Authors and Affiliations

Szymon Henryk Barczentewicz
1
Tomasz Lerch
1
ORCID: ORCID
Andrzej Bień
1

  1. AGH University of Science and Technology, Poland
Download PDF Download RIS Download Bibtex

Abstract

Speech emotion recognition is deemed to be a meaningful and intractable issue among a number of do- mains comprising sentiment analysis, computer science, pedagogy, and so on. In this study, we investigate speech emotion recognition based on sparse partial least squares regression (SPLSR) approach in depth. We make use of the sparse partial least squares regression method to implement the feature selection and dimensionality reduction on the whole acquired speech emotion features. By the means of exploiting the SPLSR method, the component parts of those redundant and meaningless speech emotion features are lessened to zero while those serviceable and informative speech emotion features are maintained and selected to the following classification step. A number of tests on Berlin database reveal that the recogni- tion rate of the SPLSR method can reach up to 79.23% and is superior to other compared dimensionality reduction methods.
Go to article

Authors and Affiliations

Jingjie Yan
Xiaolan Wang
Weiyi Gu
LiLi Ma

This page uses 'cookies'. Learn more