Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

In this article, we propose a new stopping criterion for turbo codes. This criterion is based on the behaviour of the probabilistic values alpha 'α' calculated in the forward recursion during turbo decoding. We called this criterion Sum-α. The simulation results show that the Bit Error Rates BER are very close to those of the Cross-Entropy CE criterion with the same average number of iterations.
Go to article

Bibliography

[1] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon limit error-correcting coding and decoding: Turbo codes, ” in Proc. IEEE Int. Conf. Commun., pp. 1064–1070, May 1993.
[2] J. Hagenauer, E. Offer and L. Papke, “Iterative decoding of binary block and convolutional codes”, IEEE Transactions on Information Theory, vol. 42, no. 2, pp. 429–445, Mar. 1996.
[3] M. Y. M. Nasir, R. Mohamad, M. Kassim, N. M. Tahir and E. Abdullah, “Performance Analysis of Cross-Entropy Stopping Criterion for Quadrature Amplitude Modulation, ” 2019 IEEE 9th International Conference on System Engineering and Technology (ICSET), Shah Alam, Malaysia, pp. 273-276, 2019.
[4] R. Y. Shao, S. Lin and M. P. C. Fossorier, “Two simple stopping criteria for turbo decoding, ” IEEE Transactions on Communications, vol. 47, no. 8, pp. 1117–1120, Aug. 1999.
[5] Y. Wu, B. D. Woerner and W. J. Ebel, “A simple stopping criterion for turbo decoding", IEEE Communications Letters, vol. 4, no. 8, pp. 258– 260, Aug. 2000.
[6] T. M. N. Ngatched and F. Takawira, “Simple stopping criterion for turbo decoding”, IEE Electronics Letters, vol. 37, no. 22, pp. 1350- 1351, Oct. 2001.
[7] A. Shibutani, H. Suda and F. Adachi, “Reducing average number of turbo decoding iterations”, IEE Electronics Letters, vol. 35, no. 9, pp.701–702, Apr. 1999.
[8] M. AlMahamdy and J. Dill, “Early Termination of Turbo Decoding by Identification of Undecodable Blocks,” 2017 IEEE Wireless Communications and Networking Conference (WCNC), San Francisco, CA, pp. 1-6, 2017.
[9] A. Taffin, “Generalised stopping criterion for iterative decoders,” IEEElectronics Letters, vol. 39, no. 13, pp. 993-994, June 2003.
[10] L. Trifina, H.G. Baltă and A. Ruşinaru, “Decreasing of the turbo MAP decoding time by using an iterations stopping criterion, ” IEEE International Symposium on Signals, Circuits and Systems ISSCS 2005, Iasi, Romania, pp. 371–374, 14-15 July 2005
[11] F. M. Li and A. Y. Wu, “On the new stopping criteria of iterative turbo decoding by using decoding threshold, ” IEEE Transactions on Signal Processing, vol. 55, no. 11, pp. 5506–5516, Nov. 2007.
[12] J. Wu , B. R. Vojcic and J. Sheng, "Stopping Criteria for Iterative Decoding based on Mutual Information, ” 2012 Conference Record of the Forty Sixth Asilomar Conference on Signals, Systems and Computers (ASILOMAR), pp. 183-187, Nov, 2012
[13] A. Savin, L. Trifina, M. Andrei, “Threshold Based Iteration Stopping Criterion for Turbo Codes and for Scheme Combining a Turbo Code and a Golden Space-Time Block Code,” Advances in Electrical and Computer Engineering, vol.14, no.1, pp.139-142, 2014.
[14] I. Amamra et N. Derouiche, “Enhancement of iterative turbo decoding for HARQ systems,” ICTACT Journal on Communication Technology, vol. 7, no. 2, pp. 1295-1300, Jun. 2016
[15] A. Ouardi, A. Djebbari, B. Bouazza, “Optimal M-BCJR Turbo Decoding: The Z-MAP Algorithm,” Wireless Engineering and Technology, vol. 2, no. 4, pp. 230–234, 2011.
[16] V. Franz, J. B. Anderson. “Concatenated Decoding with a Reduced-Search BCJR Algorithm,” IEEE Journal on selected areas in communication, Vol, 16, pp. 186-195, 1998.
Go to article

Authors and Affiliations

Aissa Ouardi
1

  1. Laboratory Technology of Communication, Department of Electronics, University of Saida Dr. Moulay Tahar, Saida, Algeria
Download PDF Download RIS Download Bibtex

Abstract

A deep eutectic solvent, ethaline (as a typical representative of new-generation room temperature ionic liquids), was used to anodically treat the surface of copper-nickel alloy (55 wt.% Cu). Anodic treatment in ethaline allows flexibly affecting the patterns of surface morphology: formation of stellated crystallites and surface smoothing (i.e. electropolishing) are observed depending on the applied electrode potential. The measured values of roughness coefficient ( Ra ) well correlate with the changes in surface morphology. Anodic treatment of Cu-Ni alloy in ethaline contributes to a considerable increase in the electrocatalytic activity towards the hydrogen evolution reaction in an alkaline aqueous medium, which can be used to develop new high-efficient and inexpensive electrocatalysts within the framework of the concept of carbon-free hydrogen economy.
Go to article

Authors and Affiliations

V. Protsenko
1
ORCID: ORCID
T. Butyrina
1
ORCID: ORCID
D. Makhota
1
ORCID: ORCID
S. Korniy
1 2
ORCID: ORCID
F. Danilov
1
ORCID: ORCID

  1. Ukrainian State University of Chemical Technology, Department of Physical Chemistry, Gagarin Ave., 8, Dnipro, 49005, Ukraine
  2. Karpenko Physico-Mechanical Institute of the NAS of Ukraine, Naukova St. 5, Lviv, 79060, Ukraine
Download PDF Download RIS Download Bibtex

Abstract

Principal components analysis (PCA) is frequently used for modelling the magnitude of the head-related transfer functions (HRTFs). Assuming that the HRTFs are minimum phase systems, the phase is obtained from the Hilbert transform of the log-magnitude. In recent years, the PCA applied to HRTFs is also used to model individual HRTFs relating the PCA weights with anthropometric measurements of the head, torso and pinnae. The HRTF log-magnitude is the most used format of input data to the PCA, but it has been shown that if the input data is HRTF linear magnitude, the cumulative variance converges faster, and the mean square error (MSE) is smaller. This study demonstrates that PCA applied directly on HRTF complex values is even better than the two formats mentioned above, that is, the MSE is the smallest and the cumulative variance converges faster after the 8th principal component. Different objective experiments around all the median plane put in evidence the differences which, although small, seem to be perceptually detectable. To elucidate this point, psychoacoustic discrimination tests are done between measured and reconstructed HRTFs from the three types of input data mentioned, in the median plane between -45°. and +9°.
Go to article

Authors and Affiliations

Oscar Alberto Ramos
Fabián Carlos Tommasini

This page uses 'cookies'. Learn more