Search results

Filters

  • Journals
  • Date

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

A study on plug-in electric vehicle (PEV) charging load and its impacts on distribution transformers loss-of-life, is presented in this paper. The assessment is based on residential PEV battery charging. As the exact forecasting of the charging load is not possible, the method for predicting the electric vehicle (EV) charging load is stochastically formulated. With the help of the stochastic model, the effect of fixed, time of use, and real-time charging rates on the charging load and the resultant impact on transformer derating is investigated. A 38-bus test system is adopted as the test system including industrial harmonic sources. Test results demonstrate that uncontrolled EV charging might causes a noticeable change in the K-factor of the transformer, emerging the need for derating, while applying real-time rates for battery charging loads conquers this problem even in case of harmonic-rich chargers.

Go to article

Authors and Affiliations

Hessamoddin Jouybari-Moghaddam
Download PDF Download RIS Download Bibtex

Abstract

In this paper, transient analysis on heat transfer across the residential building roof having various materials like wood wool, phase change material and weathering tile is performed by numerical simulation technique. 2-dimensional roof model is created, checked for grid independency and validated with the experimental results. Three different roof structures are included in this study namely roof with (i). Concrete and weathering tile, (ii). Concrete, phase change material and weathering tile and (iii). Concrete, phase change material, wood wool and weathering tile. Roof type 3 restricts 13% of heat entering the room in comparison with roof having only concrete and weathering tile. Also the effect of various roof layers’ thickness in the roof type 3 is investigated and identifi ed that the wood wool plays the major role in arresting the entry of heat in to the room. The average reduction of heat is about 10% for an increase of a unit thickness of wood wool layer.

Go to article

Authors and Affiliations

D. Prakash
P. Ravikumar

This page uses 'cookies'. Learn more