Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Data
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Knowledge about complex physical phenomena used in the casting process simulation requires continuous complementary research and improvement in mathematical modeling. The basic mathematical model taking into account only thermal phenomena often becomes insufficient to analyze the process of metal solidification, therefore more complex models are formulated, which include coupled heat-flow phenomena, mechanical or shrinkage phenomena. However, such models significantly complicate and lengthen numerical simulations; therefore the work is limited only to the analysis of coupled thermal and flow phenomena. The mathematical description consists then of a system of Navier-Stokes differential equations, flow continuity and energy. The finite element method was used to numerically modeling this problem. In computer simulations, the impact of liquid metal movements on the alloy solidification process in the casting-riser system was assessed, which was the purpose of this work, and the locations of possible shrinkage defects were pointed out, trying to ensure the right supply conditions for the casting to be free from these defects.
Go to article

Authors and Affiliations

L. Sowa
1
ORCID: ORCID
T. Skrzypczak
1
ORCID: ORCID
P. Kwiatoń
1
ORCID: ORCID

  1. Czestochowa University of Technology, Department of Mechanics and Machine Design Fundamentals, 73 Dąbrowskiego Str., 42-200 Częstochowa, Poland
Download PDF Download RIS Download Bibtex

Abstract

Perception takes into account the costs and benefits of possible interpretations of incoming sensory data. This should be especially pertinent for threat recognition, where minimising the costs associated with missing a real threat is of primary importance. We tested whether recognition of threats has special characteristics that adapt this process to the task it fulfils. Participants were presented with images of threats and visually matched neutral stimuli, distorted by varying levels of noise. We found threat superiority effect and liberal response bias. Moreover, increasing the level of noise degraded the recognition of the neutral images to higher extent than the threatening images. To summarise, recognising threats is special, in that it is more resistant to noise and decline in stimulus quality, suggesting that threat recognition is a fast ‘all or nothing’ process, in which threat presence is either confirmed or negated.

Go to article

Authors and Affiliations

Ewa Magdalena Król

This page uses 'cookies'. Learn more