Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 4
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Newcastle disease (ND) is a frequently reported disease in poultry among both vaccinated and non-vaccinated flocks in Pakistan. During 2011-2012 poultry industry in Punjab, mainly in Lahore region, faced fatal outbreaks of ND caused by a variant strain. An analytical study was conducted during outbreak period in Lahore region. A total of 114 environmentally controlled farms were selected with the help of convenient sampling method. A questionnaire was designed about the potential risk factors associated with the spread of ND outbreak. The bivariate relationships between ND status and independent variables were investigated by applying the Chi-square and Fisher’s exact test. Multivariable logistic model was used to estimate the effect of each studied variable on the outcome by adjusting the other variables in the model. The variables which showed an association with ND outbreaks at commercial poultry farms were improper method for dead birds disposal (OR=4.96; 95% CI 1.63-15.12), use of same feed transporting vehicle at multiple poultry farms (OR=4.92; 95% CI 1.58-15.33), farm to farm distance of less than 1 km (OR=9.32; 95% CI(1.19-73.12), number of sheds at one farm (OR=2.31; 95% CI 0.93-5.69), labor type (OR=2.72; 95% CI 0.83-8.88) and biosecurity (OR= 4.47; 95% CI 0.56-35.66).
Go to article

Bibliography


Abbas T, Wilking H, Horeth-Bontgen D, Conraths FJ (2012) Contact structure and potential risk factors for avian influenza transmission among open-sided chicken farms in Kamalia, an important poultry rearing area of Pakistan. Berl Munch Tierarztl Wochenschr 125: 110-116.

Akhtar S, Zahid S (1995) Risk indicators for Newcastle disease outbreaks in broiler flocks in Pakistan. Prev Vet Med 22: 61-69.

Alexander DJ (2000) Newcastle disease and other avian paramyxoviruses. Rev Sci Tech 19: 443-55.

Alexander DJ (2001) Newcastle disease. Br Poult Sci 42: 5-22.

Ali M, Muneer B, Hussain Z, Rehmani SF, Yaqub T, Naeem M (2014) Evaluation of efficacy of killed and commercially available live New-castle disease vaccine in broiler chickens in Pakistan. J Anim Plant Sci 24: 1663-1667.

GOP (2020) Economic of Survey Pakistan 2019-2020 Ministry of Finance, Government of Pakistan, Islamabad.

Badubi SS, Ravindran V, Reid J (2004) A survey of small-scale broiler production systems in Botswana. Trop Anim Health Prod 36: 823-834.

Chaudhry M, Rashid HB, Thrusfield M, Welburn S, Bronsvoort BM (2015) A case-control study to identify risk factors associated with avian influenza subtype H9N2 on commercial poultry farms in Pakistan. PLoS One 10: e0119019.

Chukwudi, OE, Chukwuemeka ED, Mary U (2012) Newcastle disease virus shedding among healthy commercial chickens and its epidemio-logical importance. Pak Vet J 32: 354-356.

Cornax I, Miller PJ, Afonso CL (2012) Characterization of live LaSota vaccine strain-induced protection in chickens upon early challenge with a virulent Newcastle disease virus of heterologous genotype. Avian Dis 56: 464-470.

Dohoo I, Martin W, Stryhn H (2003) Veterinary epidemiologic research, University of Prince Edward Island, Charlottetown.

East I, Kite V, Daniels P, Garner G (2006) A cross-sectional Survey of Australian chicken farms to identify risk factors associated with sero-positivity to Newcastle-disease virus. Prev Vet Med 77: 199-214.

Farooq M, Uddin Z, Durrani FR, Mian MA, Chand N, Ahmed J (2002) Prevalent diseases and overall mortality in Broilers. Pak Vet J 22: 111-115.

Gowthaman V, Singh SD, Dhama K, Ramakrishnan MA, Malik YP, Murthy TG, Chitra R, Munir M (2019) Co-infection of Newcastle disease virus genotype XIII with low pathogenic avian influenza exacerbates clinical outcome of Newcastle disease in vaccinated layer poultry flocks. VirusDisease 30: 441-452.

Hasni MS, Chaudhary M, Mushtaq MH, Durrani AZ, Rashid HB, Ali M, Ahmed M, Sattar H, Aqib AI, Zhang H (2021) Active surveillance and risk assessment of avian influenza virus subtype H9 from non-vaccinated commercial broilers of Pakistan. Braz J Poult Sci 23 (03).

Kleinbaum DG, Kupper LL Morgenstem H (1982) Epidemiologic research: principles and quantitative methods. John Wiley & Sons, Inc, New York.

Kuhn JH, Adkins S, Alioto D (2020) Taxonomic update for phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Buniyavirales and Mononegavirales. Arch Virol. 165: 3023-3072.

Lee SM, Cho ES, Choi BH, Son HY (2013) Clinical and pathological studies on co-infection of low pathogenic avian influenza virus and Newcastle disease virus in the chicken. Korean J Vet Serv 36: 163-169.

Leibler JH, Carone M, Silbergeld EK (2010) Contribution of Company Affiliation and Social Contacts to Risk Estimates of Between-Farm Transmission of Avian Influenza. Plos One 5: e9888.

Mayo MA (2002) A summary of taxonomic changes recently approved by ICTV. Arch Virol. 147: 1655-1663.

Munir MT, Chowdhury MR, Ahmed Z (2016) Emergence of new sub-genotypes of Newcastle disease virus in Pakistan. J Avian Res 2: 1-7.

Musa IW, Abdu PA, Sackey, AKB, Oladele SB, Lawal S, Yakubu IU (2010) Outbreak of Velogenic Viscerotropic Newcastle disease in Broilers. Int J Poult Sci 9: 1116-1119.

Sadiq MA, Nwanta J, Okolocha EC, Tijjani A (2011) Retrospective (2000-2009) Study of Newcastle disease (ND) cases in avian species in Maiduguri, Borno State, North Eastern Nigeria. Int J Poult Sci 10: 76-81.

Sen S, Shane SM, Scholl DT, Hugh-Jones ME, Gillespie JM (1998) Evaluation of alternative strategies to prevent Newcastle disease in Cambodia. Pre Vet Med 35: 283-295.

Shankar BP (2008) Common Respiratory Diseases of Poultry. Vet World 1: 217-219.
Go to article

Authors and Affiliations

R. Maqsood
1 2
A. Khan
1
M.H. Mushtaq
1
T. Yaqub
3
M.A. Aslam
4
H.B. Rashid
5
S.S. Gill
1
R. Akram
1
A. Rehman
1
M. Chaudhry
1

  1. Department of Epidemiology and Public Health, University of Veterinary and Animal Sciences, Lahore-Pakistan
  2. Institute of Continuing Education and Extension, University of Veterinary and Animal Sciences, Lahore-Pakistan
  3. Institute of Microbiology, University of Veterinary and Animal Sciences, Lahore-Pakistan
  4. Office of Research Innovation and Commercialization, University of Veterinary and Animal Sciences, Lahore-Pakistan
  5. Department of Veterinary Surgery and Pet Sciences, University of Veterinary and Animal Sciences, Lahore-Pakistan
Download PDF Download RIS Download Bibtex

Abstract

Preliminary results of hydrological investigations carried through at southern shore of Bellsund are presented. Negative meltwater budget of the permafrost was noted for summer 1986. Temperature and total mineralization of waters are varied in space. Temperature of outflowing meltwaters is related to air temperature. Diurnal rhythm of temperature has been distinguished in springs.

Go to article

Authors and Affiliations

Stefan Bartoszewski
Download PDF Download RIS Download Bibtex

Abstract

Diagnostics and decomposition of atmospheric disturbances in a planar flow are considered in this work. The study examines a situation in which the stationary equilibrium temperature of a gas may depend on the vertical coordinate due to external forces. The relations connecting perturbations are analytically established. These perturbations specify acoustic and entropy modes in an arbitrary stratified gas affected by a constant mass force. The diagnostic relations link acoustic and entropy modes, and are independent of time. Hence, they provide an ability to decompose the total vector of perturbations into acoustic and non-acoustic (entropy) parts, and to establish the distribution of energy between the sound and entropy modes, uniquely at any instant. The total energy of a flow is hence determined in its parts which are connected with acoustic and entropy modes. The examples presented in this work consider the equilibrium temperature of a gas, which linearly depends on the vertical coordinate. Individual profiles of acoustic and entropy parts for some impulses are illustrated with plots.

Go to article

Authors and Affiliations

Sergey Leble
Anna Perelomova
Download PDF Download RIS Download Bibtex

Abstract

Energy and spectral efficiency are the main challenges in 5th generation of mobile cellular networks. In this paper, we propose an optimization algorithm to optimize the energy efficiency by maximizing the spectral efficiency. Our simulation results show a significant increase in terms of spectral efficiency as well as energy efficiency whenever the mobile user is connected to a low power indoor base station. By applying the proposed algorithm, we show the network performance improvements up to 9 bit/s/Hz in spectral efficiency and 20 Gbit/Joule increase in energy efficiency for the mobile user served by the indoor base station rather than by the outdoor base station.

Go to article

Authors and Affiliations

Bujar Krasniqi
Blerim Rexha
Betim Maloku

This page uses 'cookies'. Learn more