Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 17
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

One of the most recent challenges in communication system and network system is the privacy and security of information and communication session. Blockchain is one of technologies that use in sensing application in different important environments such as healthcare. In healthcare the patient privacy should be protected use high security system. Key agreement protocol based on lattice ensure the authentication and high protection against different types of attack especially impersonation and man in the middle attack where the latticebased protocol is quantum-withstand protocol. Proposed improved framework using lattice based key agreement protocol for application of block chain, with security analysis of many literatures that proposed different protocols has been presented with comparative study. The resultant new framework based on lattice overcome the latency limitation of block chain in the old framework and lowered the computation cost that depend on Elliptic curve Diffie-Hellman. Also, it ensures high privacy and protection of patient’s information.
Go to article

Authors and Affiliations

Zahraa Ch. Oleiwi
1
Rasha Ail Dihin
2
Ali H. Alwan
3

  1. College of Computer Science and InformationTechnology, University Al-Qadisiyah, Iraq
  2. Faculty of Education for Girls, University of Kufa, Najaf, Iraq
  3. Alkafeel University, Najaf, Iraq
Download PDF Download RIS Download Bibtex

Abstract

Due to rapid development of wireless systems and future implementation of the 5G system, it is necessary to increase number of the stations and/or number of radio emissions in current and new mobile service frequency bands. For each of the new or modified radio installation in Poland the Electromagnetic Field (EMF) strength levels has to be evaluated and measured/validated in accordance with allowable limits. In the paper the model of estimation of total EMF levels coming from mobile base stations radio emissions to be used for estimation of the whole country territory EMF levels is proposed. Results of preliminary analysis were also shown on practical examples. The model presented in the paper can be used for initial finding of possible places where exist the risk of exceedance of the maximum exposure limits and for analysis of potential radio network development taking into account current regulatory limits. The model will be used in computerized system SI2PEM which is developing in Poland for EMF levels controlling and validation purposes.

Go to article

Authors and Affiliations

Dariusz Więcek
Daniel Niewiadomski
Marcin Mora
Download PDF Download RIS Download Bibtex

Abstract

Porosity is one of the major problems in casting operations and there are several discussions in the literature about the porosity formation in aluminum castings. Bifilms are the defects that are introduced into the melt by turbulence. They can be detected with reduced pressure test and presented numerically by measuring bifilm index. The measure of bifilm index is the sum of total oxide length given in millimeters from the cross-section of reduced pressure test sample solidified under 0.01 MPa. In this work, low pressure die casting (LPDC) unit was built in an attempt to enhance the producibility rate. The unit consists of a pump housing that was placed inside the melt in the melting furnace where the pressure was applied instead of the whole melt surface. It was observed that the melt quality of A356 alloy was deteriorated over time which had led to higher porosity. This was attributed to the increased oxide thickness of the bifilm by the consumption of air in between the folded oxides. A relationship was found between bifilm index and pore formation.
Go to article

Bibliography

[1] Campbell, J. (2011). Complete Casting Handbook: Metal Casting Processes. Techniques and Design. Elsevier Science.
[2] Bonollo, F., Urban, J., Bonatto, B. & Botter, M. (2005). Gravity and low pressure die casting of aluminium alloys: a technical and economical benchmark. La Metallurgia Italiana. 6, 23-32.
[3] Dispinar, D. & J. Campbell, (2004). Critical assessment of reduced pressure test. Part 2: Quantification. International Journal of Cast Metals Research. 17(5), 287-294.
[4] Raiszadeh, R., & Griffiths, W.D. (2006). A method to study the history of a double oxide film defect in liquid aluminum alloys. Metallurgical and Materials Transactions B. 37(6), 865-871.
[5] Raiszadeh, R., & Griffiths, W.D. (2008). A semi-empirical mathematical model to estimate the duration of the atmosphere within a double oxide film defect in pure aluminum alloy. Metallurgical and Materials Transactions B. 39(2), 298-303.
[6] Raiszadeh, R., & Griffiths, W.D. (2011). The effect of holding liquid aluminum alloys on oxide film content. Metallurgical and Materials Transactions B. 42(1), 133-143.
[7] Aryafar, M., Raiszadeh, R., & Shalbafzadeh, A. (2010). Healing of double oxide film defects in A356 aluminium melt. Journal of materials science. 45(11), 3041-3051.
[8] Farhoodi, B., Raiszadeh, R., & Ghanaatian, M. H. (2014). Role of double oxide film defects in the formation of gas porosity in commercial purity and Sr-containing Al alloys. Journal of Materials Science & Technology. 30(2), 154-162.
[9] Amirinejhad, S., Raiszadeh, R., & Doostmohammadi, H. (2013). Study of double oxide film defect behaviour in liquid Al–Mg alloys. International Journal of Cast Metals Research. 26(6), 330-338.
[10] Bakhtiarani, F.N., & Raiszadeh, R. (2011). Healing of double-oxide film defects in commercial purity aluminum melt. Metallurgical and Materials Transactions B. 42(2), 331-340.
[11] Bagherpour-Torghabeh, H., Raiszadeh, R., & Doostmohammadi, H. (2017). Role of Mechanical Stirring of Al-Mg Melt in the Healing of Bifilm Defect. Metallurgical and Materials Transactions B. 48(6), 3174-3184.
[12] Nateghian, M., Raiszadeh, R., & Doostmohammadi, H. (2012). Behavior of Double-Oxide Film Defects in Al-0.05 wt pct Sr Alloy. Metallurgical and Materials Transactions B. 43(6), 1540-1549.
[13] Stefanescu, D.M. (2005). Computer simulation of shrinkage related defects in metal castings - a review. International Journal of Cast Metals Research. 18, 129-143.
[14] Zhu, J.D., Cockcroft, S.L., Maijer, D.M. & Ding, R. (2005). Simulation of microporosity in A356 aluminium alloy castings. International Journal of Cast Metals Research. 18, 229-235.
[15] Merlin, M., Timelli, G., Bonollo, F. & Garagnani, G.L. (2009). Impact behaviour of A356 alloy for low-pressure die casting automotive wheels. Journal of Materials Processing Technology. 209(2), 1060-1073.
[16] Zhang, B., Maijer, D.M. & Cockcroft, S.L. (2007). Development of a 3-D thermal model of the low-pressure die-cast (LPDC) process of A356 aluminum alloy wheels. Materials Science and Engineering: A, 464(1-2), 295-305.
[17] Zhang, B., Cockcroft, S.L., Maijer, D.M., Zhu, J.D. & Phillion, A.B. Casting defects in low-pressure die-cast aluminum alloy wheels. JOM Journal of the Minerals, Metals and Materials Society, 57(11), 36-43.
[18] Campbell, J. (1968). Hydrostatic tensions in solidifying materials. Transactions of the Metallurgical Society of AIME, 242 (February), 264-267.
[19] Campbell, J. (1968). Hydrostatic tensions in solidifying alloys. Transactions of the Metallurgical Society of AIME, 242 (February), 268-271.
[20] Campbell, J. (1967), Shrinkage pressure in castings (The solidification of a Metal Sphere). Transactions of the Metallurgical Society of AIME, 239 (February), 138-142.
[21] Dispinar, D. & Campbell, J. (2004). Critical assessment of reduced pressure test. Part 1: Porosity phenomena. International Journal of Cast Metals Research. 17(5), 280-286.
[22] Dispinar, D., Akhtar, S., Nordmark, A., Di Sabatino, M., & Arnberg, L. (2010). Degassing, hydrogen and porosity phenomena in A356. Materials Science and Engineering: A. 527(16-17), 3719-3725.
[23] Puga, H., Barbosa, J., Azevedo, T., Ribeiro, S. & Alves, J.L. (2016). Low pressure sand casting of ultrasonically degassed AlSi7Mg0. 3 alloy: Modelling and experimental validation of mould filling. Materials & Design. 94, 384-391.
[24] El-Sayed, M.A. & Essa, K. (2018). Effect of mould type and solidification time on bifilm defects and mechanical properties of Al–7si–0.3 mg alloy castings. Computational and Experimental Studies, 23.
[25] Gyarmati, G., Fegyverneki, G., Mende, T. & Tokár, M. (2019). Characterization of the double oxide film content of liquid aluminum alloys by computed tomography. Materials Characterization. 157, 109925. [26] Gyarmati, G., Fegyverneki, G., Tokár, M., & Mende, T. (2020). The Effects of Rotary Degassing Treatments on the Melt Quality of an Al–Si Casting Alloy. International Journal of Metalcasting. 1-11.
[27] Tiryakioğlu, M. (2020). The Effect of Hydrogen on Pore Formation in Aluminum Alloy Castings: Myth Versus Reality. Metals. 10(3), 368.
[28] Tiryakioğlu, M. (2019). Solubility of hydrogen in liquid aluminium: reanalysis of available data. International Journal of Cast Metals Research. 32(5-6), 315-318.
[29] Tiryakioğlu, M. (2020). A simple model to estimate hydrogen solubility in liquid aluminium alloys. International Journal of Cast Metals Research. 1-3.
Go to article

Authors and Affiliations

O. Gursoy
1
A. Nordmak
2
F. Syvertsen
2
M. Colak
3
K. Tur
4
D. Dispinar
5
ORCID: ORCID

  1. University of Padova, Italy
  2. SINTEF, Norway
  3. University of Bayburt, Turkey
  4. Atilim University, Turkey
  5. Istanbul Technical University, Turkey
Download PDF Download RIS Download Bibtex

Abstract

Aluminum and its alloys are one of the most favored metal-based materials for engineering applications that require lightweight materials. On the other hand, composites are getting more preferable for different kinds of applications recently. Boron nitride nanotubes (BNNTs) are one of the excellent reinforcement materials for aluminum and its alloys. To enhance mechanical properties of aluminum, BNNTs can be added with different processes. BNNT reinforced aluminum matrix composites also demonstrate extraordinary radiation shielding properties. This study consists of BNNT reinforced aluminum matrix composite production performed by casting method. Since wetting of BNNT in liquid aluminum is an obstacle for casting, various casting techniques were performed to distribute homogeneously in liquid aluminum. Different methods were investigated in an aim to incorporate BNNT into liquid method as reinforcement. It was found that UTS was increased by 20% and elongation at fracture was increased by 170% when BNNT was preheated at 800°C for 30 minutes.
Go to article

Authors and Affiliations

B. Nemutlu
1
ORCID: ORCID
O. Kahraman
1
ORCID: ORCID
K. B. Demirel
1
ORCID: ORCID
I. Erkul
1
ORCID: ORCID
M. Cicek
1
ORCID: ORCID
H. Sahin
1
ORCID: ORCID
K.C. Dizdar
1
ORCID: ORCID
D. Dispinar
1
ORCID: ORCID

  1. Istanbul Technical University, Turkey
Download PDF Download RIS Download Bibtex

Abstract

The number of human cases of salmonellosis in the EU was 94,625 in 2015. Considering the source of these infections, Salmonella spp. was most frequently detected in broiler chicken meat and Salmonella Enteritidis (SE) was the most commonly reported serovar.

The efficacy of probiotics in limiting Salmonella spp. infection in poultry has been demonstrated in numerous papers. The administration of probiotics at the level of primary production reduces the risk of contamination of poultry food products with Salmonella spp.

A study was carried out in order to determine the potential for reducing the Salmonella spp. population in broiler chickens with the use of the Lavipan (JHJ, Poland) probiotic that comprised selected stains of lactic acid bacteria and Saccharomyces cervisae.

Salmonella spp.-free broiler chickens were divided into two groups and received the same feed with (group L) or without (group C) the probiotic throughout the experiment. All day-old chickens were infected per os with SE. Samples of cecum content were collected 2, 4, and 6 weeks after SE infection and pectoral muscles were collected 6 weeks following SE infection for the evaluation of the SE population number. Serum samples for serological examinations were collected 6 weeks after infection.

Six weeks after infection, the number of SE-positive cecal samples was lower in the L group (12.5% positive) in comparison to the C group (87.5%). Similar results were demonstrated for the muscle samples (25% in contrast to 87.5%). At the same time, in both cases, the SE CFU/g was significantly lower in the L group. The results of our study indicate that Lavipan was capable of reducing the population of SE in the gastrointestinal tract, which eventually improved the hygienic parameters of the pectoral muscles.

Four weeks after infection, SE was not detected in any of the experimental groups. In both groups, no specific anti-SE antibodies were detected.

Go to article

Authors and Affiliations

M. Smialek
E. Kaczorek
E. Szczucińska
S. Burchardt
J. Kowalczyk
B. Tykałowski
A. Koncicki
Download PDF Download RIS Download Bibtex

Abstract

The article presents the results of research on the finishing of M63 Z4 brass by vibratory machining. Brass alloy was used for the research due to the common use of ammunition elements, cartridge case and good cold forming properties on the construction. Until now, the authors have not met with the results of research to determine the impact of abrasive pastes in container processing. It was found that the additive for container abrasive treatment of abrasive paste causes larger mass losses and faster surface smoothing effects. The treatment was carried out in two stages: in the first stage, the workpieces were deburred and then polished. Considerations were given to the impact of mass of workpieces, machining time and its type on mass loss and changes in the geometric structure of the surface. The surface roughness of machining samples was measured with the Talysurf CCI Lite optical profiler. The suggestions for future research may be to carry out tests using abrasive pastes with a larger granulation of abrasive grains, and to carry out tests for longer processing times and to determine the time after which the parameters of SGP change is unnoticeable.

Go to article

Authors and Affiliations

D. Bańkowski
ORCID: ORCID
S. Spadło
Download PDF Download RIS Download Bibtex

Abstract

A problem is defined to investigate the effect of titanium traces on the corrosion behaviour of low carbon steel. In theory titanium effects surface properties like abrasion resistance in medium carbon steels and corrosion resistance in low as well as medium carbon steels. The present research as indicated by the topic is aimed to experimentally mark the effect of titanium traces on corrosion resistance in the available low carbon steel specimens.
The effect of microalloying with titanium (i.e.0.02wt.%) on the corrosion behavior of low carbon steel in a 3.5 wt.% NaCl solution was studied by electrochemical, SEM, and Raman spectroscopy techniques. The electrochemical results showed that the corrosion of the Ti-bearing steel improved by around 30% compared with the Ti-free steel. The titanium microalloying led to the formation of a more compact corrosion product layer on the metal surface. The SEM analysis showed that the Ti-bearing sample had a smoother surface compared with the Ti-free steel.
Go to article

Bibliography

[1] Yu, C., Wang, H., Gao, X. & Wang, H. (2020). Effect of Ti Microalloying on the Corrosion Behavior of Low-Carbon Steel in H2S/CO2 Environment. Journal of Materials Engineering and Performance. 29(9), 6118-6129. DOI: 10.1007/s11665-020-05077-1.
[2] Liu, Z., Gao, X., Du, L., Li, J., Zheng, C. & Wang, X. (2018). Corrosion mechanism of low-alloy steel used for flexible pipe in vapor-saturated H2S/CO2 and H2S/CO2-saturated brine conditions. Materials and Corrosion 69(9), 1180-1195. DOI: 10.1002/maco.201810047.
[3] Palumbo, G., Banaś, J., Bałkowiec, A., Mizera, J. & Lelek-Borkowska, U. (2014). Electrochemical study of the corrosion behaviour of carbon steel in fracturing fluid. J. Solid State Electrochem. 18(11), 2933-2945. DOI: 10.1007/s10008-014-2430-2.
[4] Liu, Z.-G., Gao, X.-H., Du, L.-X., Li, J.-P., Li, P. & Misra, R.D.K. (2017). Comparison of corrosion behaviors of low-alloy steel exposed to vapor-saturated H2S/CO2 and H2S/CO2-saturated brine environments. Materials and Corrosion 68(5), 566-579. https://doi.org/10.1002/maco.201609165.
[5] Rozenfeld, I.L. (1981). Corrosion Inhibitors. New York: McGraw-Hill.
[6] Palumbo, G., Kollbek, K., Wirecka, R., Bernasik, A. & Górny, M. (2020). Effect of CO2 partial pressure on the corrosion inhibition of N80 carbon steel by gum arabic in a CO2-water saline environment for shale oil and gas industry. Materials. 13(19), 4245, 1-24. https://doi.org/10.3390/ma13194245.
[7] Bai, H., Wang, Y., Ma, Y., Zhang, Q., Zhang, N. (2018). Effect of CO2 partial pressure on the corrosion behavior of J55 carbon steel in 30% crude oil/brine mixture. Materials. 11(9), 1765, 1-15. DOI: 10.3390/ma11091765.
[8] Cui, L., Kang, W., You, H., Cheng, J., & Li, Z. (2021). Experimental study on corrosion of J55 casing steel and N80 tubing steel in high pressure and high temperature solution containing CO2 and NaCl. Journal of Bio- and Tribo-Corrosion. 7(1), 13, 1-14. DOI: 10.1007/s40735-020-00449-5.
[9] Islam, M.A., & Farhat, Z.N. (2015). Characterization of the corrosion layer on pipeline steel in sweet environment. Journal of Materials Engineering and Performance. 24(8), 3142-3158. DOI: 10.1007/s11665-015-1564-4.
[10] Zhang, T., Liu, W., Yin, Z., Dong, B., Zhao, Y., Fan, Y., Wu, J., Zhang, Z. & Li, X. (2020). Effects of the addition of Cu and Ni on the corrosion behavior of weathering steels in corrosive industrial environments. Journal of Materials Engineering and Performance. 29(4), 2531-2541. DOI: 10.1007/s11665-020-04738-5.
[11] Weng, L., Du, L. & Wu, H. (2018). Corrosion behaviour of weathering steel with high-content titanium exposed to simulated marine environment. International Journal of Electrochemical Science. 13(6), 5888-5903. DOI: 10.20964/2018.06.61.
[12] Marcus, P. (1994). On some fundamental factors in the effect of alloying elements on passivation of alloys. Corrosion Science. 36(12), 2155-2158. https://doi.org/10.1016/0010-938X(94)90013-2.
[13] Liu, Z., Gao, X., Du, L., Li, J., Li, P. (2016). Corrosion Behaviour of Low-Alloy Steel with Titanium Addition Exposed to Seawater Environment. International Journal Electrochemical Science. 11(8), 6540-6551. DOI: 10.20964/2016.08.25.
[14] Banas, J., Lelek-Borkowska, U., Mazurkiewicz, B. & Solarski, W. (2007). Effect of CO2 and H2S on the composition and stability of passive film on iron alloys in geothermal water. Electrochim. Acta 52(18), 5704-5714. DOI: 10.1016/j.electacta.2007.01.086.
[15] Palumbo, G., Dunikowski, D., Wirecka, R., Mazur, T., Lelek-Borkowska, U., Wawer, K. & Banaś, J. (2021). Effect of Grain Size on the Corrosion Behavior of Fe-3wt.%Si-1wt.%Al Electrical Steels in Pure Water Saturated with CO2. Materials. 14(17), 5084, 1-19. https://doi.org/10.3390/ma14175084.
[16] Święch, D., Palumbo, G., Piergies, N., Pięta, E., Szkudlarek, A. & Paluszkiewicz, C. (2021). Spectroscopic investigations of 316L stainless steel under simulated inflammatory conditions for implant applications: the effect of tryptophan as corrosion inhibitor/hydrophobicity marker. Coatings. 11(9), 1097. https://doi.org/10.3390/coatings11091097.
[17] Święch, D., Paluszkiewicz, C., Piergies, N., Pięta, E., Kollbek, K. & Kwiatek, W.M. (2020). Micro- and nanoscale spectroscopic investigations of threonine influence on the corrosion process of the modified Fe surface by Cu nanoparticles. Materials. 13(20), 4482, 1-16. https://doi.org/10.3390/ma13204482.
[18] Chen, Z. & Yan, K. (2020). Grain refinement of commercially pure aluminum with addition of Ti and Zr elements based on crystallography orientation. Scientific Reports. 10(1), 16591, 1-8. https://doi.org/10.1038/s41598-020-73799-2.
[19] Kalisz, D. & Żak, P.L. (2015). Modeling of solute segregation and the formation of non-metallic inclusions during solidification of a titanium-containing steel. Kovove Materialy. 53(1), 35-41. DOI: 10.4149/km_2015_1_35.
[20] Podorska, D., Drozdz, P., Falkus, J. & Wypartowicz, J. (2006). Calculations of oxide inclusions composition in the steel deoxidized with Mn, Si and Ti. Archives of Metallurgy and Materials. 51(4), 581-586. ISSN: 1733-3490.
[21] Zhang, M., Li, M., Wang, S., Chi, J., Ren, L., Fang, M. & Zhou, C. (2020). Enhanced wear resistance and new insight into microstructure evolution of in-situ (Ti,Nb)C reinforced 316 L stainless steel matrix prepared via laser cladding. Optics and Lasers in Engineering. 128, 106043, 1-10. DOI: 10.1016/j.optlaseng.2020.106043.
[22] Sadeghpour, S., Kermanpur, A. & Najafizadeh, A. (2013). Influence of Ti microalloying on the formation of nanocrystalline structure in the 201L austenitic stainless steel during martensite thermomechanical treatment. Materials Science and Engineering: A. 584, 177-183. DOI: 10.1016/j.msea.2013.07.014.
[23] Zhang, L.M., Ma, A.L., Hu, H.X.; Zheng, Y.G., Yang, B.J. & Wang, J.Q. (2017). Effect of microalloying with Ti or Cr on the corrosion behavior of Al-Ni-Y amorphous alloys. Corrosion. 74(1), 66-74. https://doi.org/10.5006/2451.
[24] Mustafa, A.H., Ari-Wahjoedi, B. & Ismail, M.C. (2013). Inhibition of CO2 corrosion of X52 steel by imidazoline-based inhibitor in high pressure CO2-water environment. Journal of Materials Engineering and Performance. 22(6), 1748-1755. DOI: 10.1007/s11665-012-0443-5.
[25] Nie, X.P., Yang, X.H. & Jiang, J.Z. (2009) Ti microalloying effect on corrosion resistance and thermal stability of CuZr-based bulk metallic glasses. Journal of Alloys Compounds. 481(1), 498-502. DOI: 10.1016/j.jallcom.2009.03.022.
[26] Palumbo, G., Górny, M. & Banaś, J. (2019). Corrosion inhibition of pipeline carbon steel (N80) in CO2-saturated chloride (0.5 M of KCl) solution using gum arabic as a possible environmentally friendly corrosion inhibitor for shale gas industry. Journal of Materials Engineering and Performance. 28(10), 6458-6470. https://doi.org/10.1007/s11665-019-04379-3.
[27] Heuer, J.K. & Stubbins, J.F. (1999). An XPS characterization of FeCO3 films from CO2 corrosion. Corros. Sci. 41(7), 1231-1243. https://doi.org/10.1016/S0010-938X(98)00180-2.
[28] Mora-Mendoza, J.L., Turgoose, S. (2002) Fe3C influence on the corrosion rate of mild steel in aqueous CO2 systems under turbulent flow conditions. Corrosion Science. 44(6), 1223-1246. DOI: 10.1016/S0010-938X(01)00141-X.
[29] Criado, M., Martínez-Ramirez, S. & Bastidas, J.M. (2015). A Raman spectroscopy study of steel corrosion products in activated fly ash mortar containing chlorides. Construction and Building Materials. 96, 383-390. http://dx.doi.org/10.1016/j.conbuildmat.2015.08.034.
[30] Zhang, X., Xiao, K., Dong, C., Wu, J., Li, X. & Huang, Y. (2011). In situ Raman spectroscopy study of corrosion products on the surface of carbon steel in solution containing Cl− and SO42. Engineering Failure Analysis. 18(8), 1981-1989. DOI: 10.1016/j.engfailanal.2011.03.007.
[31] Święch, D., Paluszkiewicz, C., Piergies, N., Lelek-Borkowska, U. & Kwiatek, W.M. (2018). Identification of corrosion products on Fe and Cu metals using spectroscopic methods. Acta Physica Polonica Series A. 133(4), 286-288. DOI: 10.12693/APhysPolA.133.286.

Go to article

Authors and Affiliations

Ali R. Sheikh
1
ORCID: ORCID

  1. AGH University of Science and Technology, Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

The results of testing the strength properties of experimental ceramic materials containing spending moulding sand after initial mechanical reclamation as a material for subsequent layers of the stucco composition were presented. Tests were carried out on spent moulding sands from various foundry technologies, i.e. sand with furfuryl resin and sand with hydrated sodium silicate. The spent, agglomerated moulding sand has undergone a crushing process. Next, the required granular fractions used for individual layers of the stucco material were separated. Ceramic samples, in which the spent moulding sand was a substitute for fresh silica sand in successive layers of the stucco composition, were prepared. As a reference material, identical ceramic samples were used but with all layers made from the fresh silica sand. Samples prepared in this way were used to determine the bending strength of ceramic materials in the temperature range from 20 to 900ºC. The obtained values of the bending strength have demonstrated that spent moulding sand can be used in investment casting with no adverse effect on the strength of ceramic materials.

Go to article

Authors and Affiliations

M. Angrecki
ORCID: ORCID
J. Kamińska
ORCID: ORCID
J. Jakubski
ORCID: ORCID
P. Wieliczko
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

The aim of this work is to investigate the resistance of cast duplex (austenitic-ferritic) steels to pitting corrosion with respect to the value of PREN (Pitting Resistance Equivalent Number). Pitting corrosion is one of the most common types of corrosion of stainless steels. In most cases, it is caused by the penetration of aggressive anions through the protective passive layer of the steel, and after its disruption, it leads to subsurface propagation of corrosion. The motivation for the research was a severe pitting corrosion attack on the blades of the gypsum-calcium water mixer in a thermal power plant operation.
In order to examine the corrosion resistance, 4 samples of 1.4517 steel with different concentrations of alloying elements (within the interval indicated by the steel grade) and thus with a different PREN value were cast. The corrosion resistance of the samples was evaluated by the ASTM G48 – 11 corrosion test in a 6% aqueous FeCl3 solution at room and elevated solution temperatures. To verify the possible effect of different alloying element concentrations on the mechanical properties, the research was supplemented by tensile and Charpy impact tests. Based on the results, it was found that a significant factor in the resistance of duplex steels to pitting corrosion is the temperature of the solution. For the components in operation, it is therefore necessary to take this effect into account and thoroughly control and manage the temperature of the environment in which the components operate.
Go to article

Bibliography

[1] Reardon, A. (2011). 12.5 Duplex Stainless Steels. In metallurgy for the non-metallurgist (2nd Edition). Ohio: ASM International, ISBN 978-1-61503-821-3, Retrieved from https://app.knovel.com/hotlink/pdf/id:kt009JBTT4/metallurgy-non-metallurgist/duplex-stainless-steels
[2] McGuire, M.F. (2008). Duplex stainless steels. in stainless steels for design engineers (91–108) [online]. Materials Park, Ohio 44073-000: ASM International, [cit. 2020-05-19]. ISBN 978-1-61503-059-0., Retrieved from: https://app.knovel.com/hotlink/pdf/id:kt008GRPY2/stainless-steels-design/duplex-stainless-introduction
[3] O'Brien, A. ed. (2011) Stainless and Heat-Resistant Steels. In Welding Handbook, Volume 4 - Materials and Applications, Part 1 [online]. 9th Edition. Miami: American Welding Society (AWS), p. 351 [cit. 2020-05-27]. ISBN 978-1-61344-537-2. Retrieved from https://app.knovel.com/hotlink/pdf/id:kt0095SGE2/welding-handbook-volume/duplex-sta-composition
[4] Revie, R.W. ed. (2011). In Uhlig’s Corrosion Handbook [online]. Third edition. Duplex stainless steels. (695–705). Hoboken, New Jersey: John Wiley & Sons, 2011 [cit. 2020-06-14]. ISBN 978-1-61344-161-9. Retrieved from https://app.knovel.com/hotlink/pdf/id:kt008TZY32/uhlig-s-corrosion-handbook/duplex-sta-history
[5] Prošek, T. & Šefl, V. (2018). Corrosion resistance of stainless steel in drinking water treatment plants and water storage units. Koroze a ochrana materialu. 62(4), 141-147. DOI: 10.2478/kom-2018-0020.
[6] Cicek, V. (2014). Corrosion engineering. Hoboken, New Jersey: Scrivener Publishing/Wiley. ISBN 978-1-118-72089-9. Retrieved from https://app.knovel.com/hotlink/toc/id:kpCE00004B/corrosion-engineering/corrosion-engineering.
[7] Marcus, P. ed. (2012). Corrosion mechanisms in theory and practice. Third edition. Boca Raton: CRC Press, Corrosion technology (Boca Raton, Fla.). ISBN 978-1-4200-9463-3.
[8] G48 - 11(2015). Standard test methods for pitting and crevice corrosion resistance of stainless steels and related alloys by use of ferric chloride solution. West Conshohocken: ASTM International, 2015.
[9] Jargelius-Pettersson, R.F.A. (1998). Application of the pitting resistance equivalent concept to some highly alloyed austenitic stainless steels. Corrosion. 54(2), 162-168. DOI: 10.5006/1.3284840.
[10] (2015). Austenitic-ferritic (duplex) casting materials [online]. Otto Junker, 2015 [cit. 2020-06-25]. Retrieved from: https://www.otto-junker.com/cache/dl-Austenitic-Ferritic-DUPLEX-Casting-Materials-aa4d1dd1db00d37343728c6ba0598a75.pdf

Go to article

Authors and Affiliations

P. Müller
1
ORCID: ORCID
V. Pernica
1
ORCID: ORCID
V. Kaňa
1
ORCID: ORCID

  1. Brno University of Technology, Czech Republic
Download PDF Download RIS Download Bibtex

Abstract

Though normal air cooling and green sand mold-casted gray iron convey an essentially pearlitic matrix, ferritic gray iron is used in some electro-mechanical applications to have better magnetic properties, ductility, and low hardness. Conventionally, to produce ferritic gray iron, foundryman initially produces pearlitic gray iron, then it is carried through a long annealing cycle process for ferritic transformation. This experiment is conducted to eliminate the long annealing cycle from the conventional process. A process is developed to produce as-cast ferritic gray cast iron by air cooling in the green sand mold. In this experiment, Si content is kept high, but Mn content is kept low based on sulfur content; a unique thermodynamic process is established for decreasing the Mn content from the melt. After a successful preconditioning and optimum foundry return charging, the melt is specially inoculated, and metal is poured into the green sand mold. An extra feeder is added for slowing down the cooling rate where casting thickness is around 15mm. Finally, hardness and metallographic images are observed for final confirmation of the ferritic matrix.
Go to article

Bibliography

[1] Callister, W.D. Jr. (2007). Applications and processing of metal alloys. Materials Science and Engineering, An introduction. John Wiley & Sons, Inc. 367-370.
[2] All Sister Concern of WALTON Group (2021). Component of GVM38AA model Compressor. Retrieved June 6, 2021, from https://waltonbd.com/compressor/walpha-series r134a /gvm38aa.
[3] Fox, M.A.O. & Adams, R.D. (1973). Correlation of the damping capacity of cast iron with its mechanical properties and microstructure. Journal of Mechanical Engineering Science. 15(2), 81-94.
[4] Buschow K.H.J., de Boer F.R. (2003) Soft-Magnetic Materials. Physics of Magnetism and Magnetic Materials. Springer, Boston, MA. https://doi.org/10.1007/0-306-48408-0_14.
[5] Mozetic, H., Fonseca, E., Schneider, E. L., Kindlein Jr, W., & Schaeffer, L. (2011). The use of magnetic field annealing on nodular cast iron for speaker cores. International Journal of Applied Electromagnetics and Mechanics. 37(1), 51-65.
[6] Dura-Bur, Metal Service (2021). G1A gray iron. Retrieved June 8, 2021 from https://www.dura-barms.com/products/dura-bar/gray-iron/g1a.
[7] Wensheng, L. (1995). Production of as-cast ferritic nodular cast iron. Journal of Zhengzhou Textile Institute. 3, 50-52.
[8] Guzik, E., Kopyciński, D., & Wierzchowski, D. (2014). Manufacturing of ferritic low-silicon and molybdenum ductile cast iron with the innovative 2PE-9 technique. Archives of Metallurgy and Materials. 59(2), 687-691.
[9] Stefanescu, D.M. (1981). Production of as-cast ferritic and ferritic-pearlitic ductile iron in green sand molds. AFS International Cast Metals Journal. June 1981, 23-32.
[10] Fraś, E. & Górny, M. (2012). An inoculation phenomenon in cast iron. Archives of Metallurgy and Materials. 57(3), 767- 777. DOI: https://doi.org/10.2478/v10172-012-0084-6.
[11] Riposan, I., Chisamera, M., Stan, S. & White, D. (2009). Complex (Mn, X) S compounds-major sites for graphite nucleation in grey cast iron. China Foundry. 6(4), 352-358.
[12] Ghosh, S. (1995), Micro-structural characteristics of cast irons. Retrieved July 10, 2019, from http://eprints.nmlindia.org/4334/1/E1-18.pdf.
[13] Lacaze, J. & Sertucha, J. (2016). Effect of Cu, Mn, and Sn on pearlite growth kinetics in as-cast ductile irons. International Journal of Cast Metals Research. 29(1-2), 74-78. DOI: 10.1080/13640461.2016.1142238.
[14] Stefanescu, D. M., Alonso, G., & Suarez, R. (2020). Recent developments in understanding nucleation and crystallization of spheroidal graphite in iron-carbon-silicon alloys. Metals. 10(2), 221. DOI: 10.3390/met10020221.
[15] Ghosh, S. (1994). Heat Treatment of Cast Irons. In: Workshop on Heat Treatment & Surface Engineering of Iron & Steels (HTIS-94), May 11-13, 1994, NML, Jamshedpur.
[16] Electro-Nite. Thermal analysis of cast iron. Retrieved June 8, 2021 from https://www.heraeus.com/media/media/hen/media_hen/products_hen/iron/thermal_analysis_of_cast_iron.pdf.
[17] Koriyama, S., Kanno, T., Iwami, Y., & Kang, I. (2020). Investigation of the difference between carbon equivalent from carbon saturation degree and that from liquidus. International Journal of Metalcasting, 1-8.
[18] Sekowski, K., Piaskowski, J., Wojtowicz, Z. (1972). Atlas of the standard microstructures of foundry alloys. Warszawa: WNT, Poland.
[19] Mampaey, F. (1981). The manganese: sulfur ratio in gray irons. Fonderie Belge – De Belgische Gieterej. 51(1), 11-25 (March 1981).
[20] Gundlach, R., Meyer, M. & Winardi, L. (2015). Influence of Mn and S on the properties of cast iron part III—testing and analysis. International Journal of Metalcasting. 9(2), 69-82.
[21] Behnam, M. J., Davami, P. & Varahram, N. (2010). Effect of cooling rate on microstructure and mechanical properties of gray cast iron. Materials Science and Engineering: A. 528(2), 583-588. DOI: 10.1016/j.msea.2010.09.087.
Go to article

Authors and Affiliations

Md Sojib Hossain
1

  1. Bangladesh University of Engineering and Technology, Shahbagh, Dhaka – 1000, Bangladesh
Download PDF Download RIS Download Bibtex

Abstract

Nonlinearities in optical fibers deteriorate system performances and become a major performancelimiting issue. This article aims to investigate the compensation of nonlinear distortions in optical communication systems based on different wavelength propagations over few-mode fiber (FMF). The study adopted Space Division Multiplexing (SDM) based on decision feedback equalizer (DFE). Various transmission wavelength of the FMF system is applied to mitigate the attenuation effect on the system. In this paper, different wavelengths (780, 850 and 1550 nm) are used in SDM. Extensive simulation is performed to assess the attenuation and Bit Error Rate (BER) in each case. The results show that the wavelength of 1550 nm produces higher power and less attenuation in the transmission. Furthermore, this wavelength produces the best distance with less BER compared to 780 nm and 850 nm wavelengths. Moreover, the validations show improvement in BER and eye diagram.

Go to article

Authors and Affiliations

A. Al-Dawoodi
A. Fareed
T. Masuda
A. Ghazi
A.M. Fakhrudeen
S.A. Aljunid
S.Z.S. Idrus
A. Amphawan
Download PDF Download RIS Download Bibtex

Abstract

The paper presents selected granular ceramic materials available on the Polish market. Their characteristics have been determined in the aspect on application in the production of iron alloy-ceramic composite. The possibility of obtaining a composite layer by means of bulk grains in molds of plates were considered, which was the foundation for experimental molds to be used in service tests. On the basis of obtaining results was stated that the knowledge of the characteristics of bulk grains enables the calculation of their quantity necessary for the composite production. When using the bulk grains the thickness of the composite layer is restricted by the thermal relations (cooler) and the physical phenomena (buoyancy, metal static pressure). Increasing amount of grains above definite condition causes surface defects in the castings. Each casting, due to its weight, shape and place of composite layer production requires an individual approach, both at the stage of formation and that of calculation of the required quantity of ceramic grains.
Go to article

Authors and Affiliations

A. Dulska
J. Kilarski
A. Studnicki
J. Szajnar
Download PDF Download RIS Download Bibtex

Abstract

A personal data referring to the scaphoid skull housed in the Department of Anatomy of the Jagiellonian University, Medical College was established thanks to reviewing 19th century literature performed by Dr. Sofi caru. We received information that the skull had belonged to an adult man who was a carpenter, born at Cracow. Th e original anthropometrical study of this skull was performed by prof. Kopernicki 19th century.

Go to article

Authors and Affiliations

Janusz Skrzat
Andrei Dorian Soficaru
Jerzy Walocha
Tomasz Kasprzycki

This page uses 'cookies'. Learn more