Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

In the article an attempt is made to analyze the aspects of non-dogmatic spirituality of characters in the prose works of Ukrainian postm odernists (including Yuriy Andrukhovych, Oksana Zabuzhko, Yuriy Izdryk, Natalia Sniadanko). The theoretical aspects of problem are considered in the context of analytical psychology of Carl Gustav Jung. The following concepts play an important role in the study: religious position, father complex, conflict and some others.

Go to article

Authors and Affiliations

Irena Betko
Download PDF Download RIS Download Bibtex

Abstract

From 2009 to 2018, a total of 80 wheat crops were studied at plot and regional scales to predict stripe rust epidemics based on influential climatic indicators in Kermanshah province, Iran. Disease onset time and epidemic intensity varied spatially and temporarily. The disease epidemic variable was classified as having experienced nonepidemic, moderate or severe epidemics to be used for statistical analysis. Principal component analysis (PCA) was used to identify climatic variables associated with occurrence and intensity of stripe rust epidemics. Two principal factors accounting for 70% of the total variance indicated association of stripe rust epidemic occurrence with the number of icy days with minimum temperatures below 0°C (for subtropical regions) and below −10°C (for cool temperate and semi-arid regions). Disease epidemic intensity was linked to the number of rainy days, the number of days with minimum temperatures within the range of 7−8°C and relative humidity (RH) above 60%, and the number of periods involving consecutive days with minimum temperature within the range of 6−9°C and RH% > 60% during a 240-day period, from September 23 to May 21. Among mean monthly minimum temperatures and maximum relative humidity examined, mean maximum relative humidity for Aban (from October 23 to November 21) and mean minimum temperature for Esfand (from February 20 to March 20) indicated higher contributions to stripe rust epidemic development. Confirming PCA results, a multivariate logit ordinal model was developed to predict severe disease epidemics. The findings of this study improved our understanding of the combined interactions between air temperature, relative humidity, rainfall, and wheat stripe rust development over a three-season period of autumn-winter-spring.

Go to article

Authors and Affiliations

Bita Naseri
Farhad Sharifi
Download PDF Download RIS Download Bibtex

Abstract

Engineering activity may lead to uncontrolled changes in the geological environment. This paper presents an example of structural changes in fluvial sand of the Praski terrace (in Warsaw) caused by the activity of a temporary concrete batching plant. Our investigations made it possible to identify the material responsible for the structural anomalies observed in the bottom of the trench excavation. The compound responsible for the cementation phenomenon was identified as ettringite – hydrated calcium aluminosulphate: Ca 6Al 2[(OH) 12(SO 4) 3]·26H 2O. The source of ettringite were most probably significant volumes of contaminants coming from the temporary concrete batching plant (e.g., from the rinsing of concrete mixers and/or installations for concrete storage and transportation). While penetrating into the ground, ettringite caused extensive cementation of the soil mass, mainly in the saturation zone. As a result, the mineral (chemical) composition of the inter-grain space changed and the structure of the sand was strengthened. The estimated zone of volumetric changes in soil properties was about 6 thousand m 3. However, analysis of the chemical composition of groundwater for its potential sulphate contamination, did not reveal any anomalous concentrations of sulphates.
Go to article

Authors and Affiliations

Piotr Zawrzykraj
1
Paweł Rydelek
2
Anna Bąkowska
2
Krzysztof Cabalski
2

  1. University of Warsaw, Faculty of Geology, Department of Engineering Geology and Geomechanics, Żwirki i Wigury 93, 02-089 Warszawa
  2. University of Warsaw, Faculty of Geology, Department of Environmental Protection and Natural Resources, Żwirki i Wigury 93, 02-089 Warszawa

This page uses 'cookies'. Learn more