Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

In this paper the application of so called wedge functions is presented to solve two-dimensional simple geometries of magnetostatic and electrostatic problems, e.g. rectangles of varying aspect ratio and with different values of the magnetic permeability μ. Such problems require the use of surface charge density, or segment source, functions of the form ρs = σa-1, where the power parameters, a, have special fractional values. A methodology is presented to determine these special values of a and use them in segment sources on simple geometries, i.e. rectangles of varying aspect ratio, and with different values of the magnetic permeability μ. Wedge solutions are obtained by coupling the strength coefficients of source segments of the same power around an edge. These surface source functions have been used in the analysis of conducting and infinite permeability structures. Here we apply such functions in a boundary integral analysis method to problems having regions of finite permeability.

Go to article

Authors and Affiliations

Ernst Huijer
Sami Karaki
Download PDF Download RIS Download Bibtex

Abstract

Recenzja książki Katarzyny Pękackiej-Falkowskiej, Dżuma w Toruniu w trakcie III wojny północnej (Lublin: Towarzystwo Naukowe Katolickiego Uniwersytetu Lubelskiego, 2019).

Go to article

Authors and Affiliations

Stanisław Witecki
Download PDF Download RIS Download Bibtex

Abstract

Experimental methods are presented for determining the thermal resistance of vertical-cavity surfaceemitting lasers (VCSELs) and the lateral electrical conductivity of their p-type semiconductor layers. A VCSEL structure was manufactured from III-As compounds on a gallium arsenide substrate. Conductivity was determined using transmission line measurement (TLM). Electrical and thermal parameters were determined for various ambient temperatures. The results could be used for computer analysis of VCSELs. Keywords: TLM, thermal resistance, VCSEL, AlGaAs.
Go to article

Authors and Affiliations

Patrycja Śpiewak
1
ORCID: ORCID
Marcin Gębski
1
ORCID: ORCID
Włodek Strupiński
2 3
Tomasz Czyszanowski
1
Walery Kołkowski
2
Iwona Pasternak
2 3
Robert P. Sarzała
1
ORCID: ORCID
Włodzimierz Nakwaski
1
Włodzimierz Wasiak
1

  1. Photonics Group, Institute of Physics, Lodz University of Technology, ul. Wólczanska 219, 90-924 Łódz, Poland
  2. Vigo Photonics S.A., ul. Poznanska 129/133, 05-850 Ozarów Mazowiecki, Poland
  3. Faculty of Physics, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw, Poland

This page uses 'cookies'. Learn more