Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 7
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The article takes the renewed demands of the Polish government as an opportunity to examine the question of whether Germany is obliged to pay reparations to Poland. Based on an analysis of the international agreements concluded since 1945, it can be shown that the Polish government’s demands on Germany are unfounded.
Go to article

Authors and Affiliations

Stephan Hobe
1

  1. Professor, Dr. h.c., Director of the Institute for Air Law, Space Law and Cyber Law, University of Cologne (Cologne)
Download PDF Download RIS Download Bibtex

Abstract

Deformed wing virus (DWV) is one of the most widespread viral infections of European honey bee Apis mellifera L. worldwide. So far, this is the first study which tested the effect of different ratios of synthetic protein to fat (P : F) diets on the health of broodless nurseaged honey bees in the laboratory. The aim of the current study was to determine the load of DWV in the whole body of A. mellifera that were fed different ratios of P : F diets (25 : 1, 10 : 1, 5 : 1, 1 : 1, 1 : 5, 1 : 10, 1 : 12.5 and 1 : 0 as a control). The methods involved feeding bees the tested diets for 10 days and then measuring the virus titre using qPCR technique. The results showed that DWV concentration decreased as the fat content of diets consumed increased. The copy number of viral genomes declined from 7.5 × 105 in the zero-fat diet (1 : 0) to 1.6 × 102 virus genomes in 1 : 12.5 (P : F). We can conclude that there is a positive relationship between fat diets and bee immunity and overall results suggest a connection between fat diet and bee health, indicating that colony losses can be reduced by providing a certain protein and fat supplemental feeding.
Go to article

Bibliography

1. Alaux C., Dantec C., Parrinello H., Le Conte Y. 2011. Nutrigenomics in honey bees: digital gene expression analysis of pollen's nutritive effects on healthy and varroa-parasitized bees. BMC genomics 12 (1): 496. DOI: https://doi.org/10.1186/1471-2164-12-496.
2. Alaux C., Ducloz F., Crauser D., Le Conte Y. 2010. Diet effects on honeybee immunocompetence. Biology Letters: rsbl20090986. DOI: https://doi: 10.1186/1471-2164-12-496.
3. Basualdo M., Barragan S., Vanagas L., Garcia C., Solana H., Rodriguez E., Bedascarrasbure E. 2013. Conversion of high and low pollen protein diets into protein in worker honey bees (Hymenoptera: Apidae). Journal of Economic Entomology 106 (4): 1553–1558. DOI: https://doi.org/10.1603/ec12466.
4. Benaets K., Van Geystelen A., Cardoen D., De Smet L., de Graaf D. C., Schoofs L., Larmuseau M.H., Brettell L.E., Martin S.J., Wenseleers T. 2017. Covert deformed wing virus infections have long-term deleterious effects on honeybee foraging and survival. Proceedings of the Royal Society B: Biological Sciences 284 (1848), 25 pp. DOI: http://dx.doi.org/10.1098/rspb.2016.2149
5. Branchiccela B., Castelli L., Corona M., Díaz-Cetti S., Invernizzi C., de la Escalera G.M., Mendoza Y., Santos E., Silva C., Zunino P. 2019. Impact of nutritional stress on the honeybee colony health. Scientific Reports 9 (1): 1–11. DOI: https://doi.org/10.1038/s41598-019-46453-9
6. Brodschneider R., Crailsheim K. 2010. Nutrition and health in honey bees. Apidologie 41 (3): 278–294. DOI: https://doi.org/10.1051/apido/2010012
7. Crailsheim K. 1991. Interadult feeding of jelly in honeybee (Apis mellifera L.) colonies. Journal of Comparative Physiology B 161 (1): 55–60. DOI: https://doi.org/10.1007/BF00258746
8. Dainat B., Evans J.D., Chen Y.P., Gauthier L., Neumann P. 2012. Predictive markers of honey bee colony collapse. PLoS one 7 (2): e32151. DOI: https:// doi.org/10.1371/journal.pone.0032151.
9. DeGrandi-Hoffman G., Chen Y., Huang E., Huang M.H. 2010. The effect of diet on protein concentration, hypopharyngeal gland development and virus load in worker honey bees (Apis mellifera L.). Journal of Insect Physiology 56: 1184–1191. DOI: https://doi.org/10.1016/j.jinsphys.2010.03.017
10. deGroot A. 1953. Protein and amino acid requirements of the honey bee (Apis mellifera L.). Phys Comp Oec 3: 197–285. DOI: https://doi.org/10.1007/BF02173740
11. Di Pasquale G., Salignon M., Le Conte Y., Belzunces L.P., Decourtye A., Kretzschmar A., Suchail S., Brunet J.-L., Alaux C. 2013. Influence of pollen nutrition on honey bee health: do pollen quality and diversity matter? PloS One 8 (8): e72016. DOI: https://doi.org/10.1371/journal.pone.0072016
12. Di Prisco G., Annoscia D., Margiotta M., Ferrara R., Varricchio P., Zanni V., Caprio E., Nazzi F., Pennacchio F. 2016. A mutualistic symbiosis between a parasitic mite and a pathogenic virus undermines honey bee immunity and health. Proceedings of the National Academy of Sciences 113 (12): 3203–3208. DOI: https://doi.org/10.1073/pnas.1523515113
13. Forzan M., Felicioli A., Sagona S., Bandecchi P., Mazzei M. 2017. Complete genome sequence of deformed wing virus isolated from Vespa crabro in Italy. Genome Announc 5 (40): e00961–00917. DOI: https://doi.org/10.1128/genomeA.00961-17
14. Goodman W.G., Cusson M. 2012. The juvenile hormones p. 310–365. In: "Insect Endocrinology" (L.I. Gilbert, ed.). San Diego, Academic Press. CA, USA.
15. Goulson D., Nicholls E., Botías C., Rotheray E. L. 2015. Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science 347 (6229): 1–16. DOI: 10.1126/science.1255957
16. Highfield A.C., El Nagar A., Mackinder L.C., Noel L.M., Hall M.J., Martin S.J., Schroeder D.C. 2009. Deformed wing virus implicated in overwintering honeybee colony losses. Applied Environmental Microbiology 75 (22): 7212–7220. DOI: https://doi.org/10.1128/AEM.02227-09
17. Im S.-S., Yousef L., Blaschitz C., Liu J.Z., Edwards R.A., Young S.G., Raffatellu M., Osborne T.F. 2011. Linking lipid metabolism to the innate immune response in macrophages through sterol regulatory element binding protein-1a. Cell Metabolism 13 (5): 540–549. DOI: https://doi.10.1016/j.cmet.2011.04.001
18. Jackman J.A., Cho N.-J. 2020. Supported lipid bilayer formation: beyond vesicle fusion. Langmuir 36 (6): 1387–1400. DOI: 10.1021/acs.langmuir.9b03706
19. Martin S.J., Brettell L.E. 2019. Deformed wing virus in honeybees and other insects. Annual Review of Virology 6: 49–69. DOI: https://doi.org/10.1146/annurev-virology-092818-015700
20. Moore J., Jironkin A., Chandler D., Burroughs N., Evans D.J., Ryabov E.V. 2011. Recombinants between Deformed wing virus and Varroa destructor virus-1 may prevail in Varroa destructor-infested honeybee colonies. Journal of General Virology 92 (1): 156–161. DOI: 10.1099/vir.0.025965-0
21. Ponton F., Wilson K., Cotter S.C., Raubenheimer D., Simpson S.J. 2011. Nutritional immunology: a multi-dimensional approach. PLoS Pathogens 7 (12): e1002223. DOI: https://doi.org/10.1371/journal.ppat.1002223
22. Ponton F., Wilson K., Holmes A.J., Cotter S.C., Raubenheimer D., Simpson S.J. 2013. Integrating nutrition and immunology: a new frontier. Journal of Insect Physiology 59 (2): 130–137. DOI: https://doi.org/10.1016/j.jinsphys.2012.10.011
23. Roulston T.A.H., Cane J.H., Buchmann S.L. 2000. What governs protein content of pollen: pollinator preferences, pollen-pistil interactions, or phylogeny? Ecological Monographs 70 (4): 617–643. DOI: https://doi.org/10.1890/0012-9615(2000)070[0617:WGPCOP]2.0.CO;2
24. Smilanich A.M., Mason P.A., Singer M.S. 2014. Ecological immunology mediated by diet in herbivorous insects. Integrative and Comparative Biology 54 (5): 913–921. DOI: https:// doi.org/10.1093/icb/icu089.
25. Staroscik A. 2004. Calculator for determining the number of copies of a template. URI Genomics and Sequencing Center.
26. Tantillo G., Bottaro M., Di Pinto A., Martella V., Di Pinto P., Terio V. 2015. Virus Infections of honeybees Apis mellifera. Italian Journal of Food Safety 4 (3): 5364–5364. DOI: https://doi.org/10.4081/ijfs.2015.5364.
27. Vaudo A.D., Stabler D., Patch H.M., Tooker J.F., Grozinger C.M., Wright G.A. 2016. Bumble bees regulate their intake of essential protein and lipid pollen macronutrients. Journal of Experimental Biology 219 (24): 3962–3970. DOI: https://doi.org/10.1242/jeb.140772.
28. Winston M.L. 1991. The Biology of the Honey Bee. Harvard University Press, Cambridge, USA. 281 pp.

Go to article

Authors and Affiliations

Baida Mohsen Alshukri
1
Mushtaq Talib Al-Esawy
1 2

  1. Plant Protection Department, University of Kufa, Najaf Governorate, Iraq
  2. Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
Download PDF Download RIS Download Bibtex

Abstract

The constructed wetland integrated with microbial fuel cell (CW-MFC) has gained attention in wastewater treatment and electricity generation owing to its electricity generation and xenobiotic removal efficiencies. This study aims to use the CW-MFC with different macrophytes for domestic wastewater treatment and simultaneously electricity generation without chemical addition. The various macrophytes such as Crinum asiaticum, Canna indica, Hanguana malayana, Philodendron erubescens, and Dieffenbachia seguine were used as a cathodic biocatalyst. The electrochemical properties such as half-cell potential and power density were determined. For wastewater treatment, the chemical oxygen demand (COD) and other chemical compositions were measured. The results of electrochemical properties showed that the maximal half-cell potential was achieved from the macrophyte D. seguine. While the maximal power output of 5.42±0.17 mW/m2 (7.75±0.24 mW/m3) was gained from the CW-MFC with D. seguine cathode. Moreover, this CW-MFC was able to remove COD, ammonia, nitrate, nitrite, and phosphate of 94.00±0.05%, 64.31±0.20%, 50.02±0.10%, 48.00±0.30%, and 42.05±0.10% respectively. This study gained new knowledge about using CW-MFC planted with the macrophyte D. seguine for domestic wastewater treatment and generation of electrical power as a by-product without xenobiotic discharge.
Go to article

Bibliography

  1. Almeida-Naranjo, C.E, Guachamin, G., Guerrero, V.H. & Villamar, C.V. (2020). Heliconia stricta hubber behavior on hybrid constructed wetlands fed with synthetic domestic wastewater. Water, 12, 5, pp. 1373. DOI:10.3390/w12051373
  2. APHA AWWA WEF (2005). Standard methods for the examination of water and wastewater. American Public Health Association, Washington 2005.
  3. Araneda, I., Tapia, N.F., Allende, K.L. & Vargas, I.T. (2018). Constructed wetland-microbial fuel cell for sustainable greywater treatment. Water, 10, 7, pp. 940. DOI:10.3390/w10070940
  4. Bracher, G.H., Carissmi, E., Wolff, D.B., Graepin, C. & Hubner, A.P. (2020). Optimization of an electrocoagulation-flotation system for domestic wastewater treatment and reuse. Environmental Technology, 42, 17, pp. 2669-2679. DOI:10.1080/09593330.2019.1709905
  5. Chaijak, P., Lertworapreecha, M., Changkit, N. & Sola, P. (2022). Electricity generation from hospital wastewater in microbial fuel cell using radiation tolerant bacteria. Biointerface Research in Applied Chemistry, 12, 4, pp. 5601-5609. DOI:10.33263/BRIAC124.56015609
  6. Chaijak, P., Sukkasem, C., Lertworapreecha, M., Boonsawang, P., Wijasika, S. & Sato, C. (2018). Enhancing electricity generation using a laccase-based microbial fuel cell with yeast Galactomyces reessii on the cathode. Journal of Microbiology and Biotechnology, 28, 8, pp. 1360-1366. DOI:10.4014/jmb.1803.03015
  7. Corbella, C. & Puigagut, J. (2018). Improving domestic wastewater treatment efficiency with constructed wetland microbial fuel cells: Influence of anode material and external resistance. Science of the Total Environment, 631-632, 1, pp. 1406-1414. DOI:10.1016/j.scitotenv.2018.03.084
  8. Das, B., Gaur, S.S., Katha, A.R., Wang, C.T. & Katiyar, V. (2021). Crosslinked poly(vinyl alcohol) membrane as separator for domestic wastewater fed dual chambered microbial fuel cells. International Journal of Hydrogen Energy, 46, 10, pp. 7073-7086. DOI:10.1016/j.ijhydene.2020.11.213
  9. Dincer, I. & Siddiqui, O. (2020). Ammonia fuel cells, Elsevier, Amsterdam 2020.
  10. Ge, X., Cao, X., Song, X., Wang, Y., Si, Z., Zhao, Y., Wang, W.. & Tesfahunegn, A.A. (2020). Bioenergy generation and simultaneous nitrate and phosphorus removal in a pyrite-based constructed wetland-microbial fuel cell. Bioresour Technol, 296, pp.122350. DOI:10.1016/j.biortech.2019.122350
  11. Guadarrama-Perez, O., Bahena-Rabadan, K., Dehesa-Carrasco, U., Perez, V.H.G. & Estrada-Arriaga, E.B. (2020). Bioelectricity production using macrophytes in constructed wetland-microbial fuel cells. Environmental Technology, 2020. DOI:10.1080/09593330.2020.1841306
  12. Han, J.L., Yang, Z.N., Wang, H., Zhou, H.Y., Xu, D., Yu, S. & Gao, L. (2021). Decomposition of pollutants from domestic sewage with the combination system of hydrolytic acidification coupling with constructed wetland microbial fuel cell. Journal of Cleaner Production, 319, 1, pp. 128650. DOI:10.1016/j.jcliepro.2021.128650
  13. Ho, V.T.T., Dang, M.P., Lien, L.T., Huynh, T.T., Hung, T.V. & Bach, L.G. (2020). Study on domestic wastewater treatment of the horizontal subsurface flow wetlands (HSSF-CWs) using Brachiaria mutica. Waste and Biomass Valorization, 11, 10, pp. 5627-5634. DOI:10.1007/s12649-020-01084-4
  14. Karla, M.R., Alejandra, V.A.C., Lenys, F. & Patricio, E.M. (2022). Operational performance of corncobs/sawdust biofilters coupled to microbial fuel cells treating domestic wastewater. Science of the Total Environment, 809, 1, pp. 151115. DOI:10.1016/j.scitotenv.2021.151115
  15. Kim, M., Song, Y.E., Li, S. & Kim, J.R. (2021). Microwave-treated expandable graphite granule for enhancing the bioelectricity generation of microbial fuel cells. Journal of Electrochemical Science and Technology, 12, 3, pp. 297-301. DOI:10.33961/jecst.2020.01739
  16. Klimsa, L., Melcakova, I., Novakova, J., Bartkova, M., Hlavac, A., Krakovska, A., Dombek, V. & Andras, P. (2020). Recipient pollution caused by small domestic wastewater treatment plants with activated sludge. Carpathian Journal of Earth and Environmental Science, 15, 1, pp. 19-25. DOI:10.26471/cjees/2020/015/104
  17. Libecki, B. & Mikolajczyk, T. (2021). Phosphorus removal by microelectrolysis and sedimentation in the integrated devices. Archives of Environmental Protection, 47, 1, pp. 3-9. DOI:10.24425/aep.2021.136442
  18. Moondra, N., Jariwala, N.D. & Christian, R.A. (2020). Sustainable treatment of domestic wastewater through microalgae. International Journal of Phytoremediation, 22, 14, pp. 1480-1486. DOI:10.1080/15226514.2020.1782829
  19. Nhut, H.T., Hung, N.T.Q., Sac, T.C., Bang, N.H.K., Tri, T.Q., Hiep, N.T. & Ky, N.M. (2020). Removal of nutrients and pollutants from domestic wastewater treatment by sponge-based moving bed biofilm reactor. Environmental Engineering Research, 25, 5, pp. 652-658. DOI:10.4491/eer.2019.285
  20. Ni, J., Steinberger-Wilckens, R. & Wang, O.H. (2021). Simultaneous domestic wastewater treatment and electricity generation in microbial fuel cell with Mn(IV) oxide addition. Chemistry Select, 6, 3, pp.369-375. DOI:10.1002/slct.202004680
  21. Pasquini, L., Munoz, J.F., Pons, M.N., Yvon, J., Dauchy, X., France, X., Le, N.D., France-Lanord, C. & Gorner, T. (2014). Occurrence of eight household micropollutants in urban wastewater and their fate in a wastewater treatment plant. Statistical evaluation. The Science of the Total Environment, 481, 1, pp. 456-468. DOI:10.1016/j.scitotenv.2014.02.075
  22. Rajasulochana, P. & Preethy, V. (2016). Comparison on efficiency of various techniques in treatment of waste and sewage water – A comprehensive review. Resource-Efficient Technologies, 2, 4, pp.175-184. DOI:10.1016/j.reffit.2016.09.004
  23. Shukla, R., Gupta, D., Singh, G. & Mishra, V.K. (2021). Performance of horizontal flow constructed wetland for secondary treatment of domestic wastewater in a remote tribal area of Central India. Sustainable Environment Research, 31, 1, pp. 13. DOI:10.1186/s42834-021-00087-7
  24. Vega de Lille, M.I., Hernandez Cardona, M.A., Tzakum Xicum, Y.A., Giacoman-Vallejos, G. & Quintal-Franco, C.A. (2021). Hybrid constructed wetlands system for domestic wastewater treatment under tropical climate: Effect of recirculation strategies on nitrogen removal. Ecological Engineering, 166, 1, pp.106243. DOI:10.1016/j.ecoleng.2021.106243
  25. Vo, N.X.P., Hoang, D.D.N., Huu, T.D., Van, T.D., Thanh, H.L.P. & Xuan, Q.V.N. (2021). Performance of vertical up-flow-constrcuted wetland integrating with microbial fuel cell (VFCW-MFC) treating ammonium in domestic wastewater. Environment Technology, 1, 1, pp. 1-16. DOI:10.1080/09593330.2021.2014574
  26. Wang, J.F., Song, X.S., Wang, Y.H., Bai, J.H., Li, M.J., Dong, G.Q., Lin, F.D., Lv, Y.F. & Yan, D.H. (2017). Bioenergy generation and rhizodegradation as affected by microbial community distribution in a coupled constructed wetland-microbial fuel cell system associated with three macrophyte. Science of the Total Environment, 607, 1, pp. 53-62. DOI: 10.1016/j.scitotenv.2017.06.243
  27. Xie, T., Jing, Z., Hu, J., Yuan, P., Liu, Y.L. & Cao, S.W. (2018). Degradation of nitrobenzene-containing wastewater by a microbial fuel cell coupled constructed wetland. Ecological Engineering, 112, 1, pp. 65-71. DOI:10.1016/j.ecoleng.2017.12.018
  28. Xu, F., Cao, F.Q., Kong, Q., Zhou, L.I., Yuan, Q., Zhu, Y.J., Wang, Q., Du, Y.D. & Wang, Z.D. (2018). Electricity production and evolution of microbial community in the constructed wetland-microbial fuel cell. Chemical Engineering Journal, 339, pp. 476-486. DOI:10.1016/j.cej.2018.02.003
  29. Yang, S.L., Zheng, Y.F., Mao, Y.X., Xu, L., Jin, Z., Zhao, M., Kong, H.N., Huang, X.F. & Zheng, X.Y. (2021). Domestic wastewater treatment for single household via novel subsurface wastewater infiltration systems (SWISs) with NiiMi process: Performance and microbial community. Journal of Cleaner Production, 279, 1, pp. 123434. DOI:10.1016/j.jclepro.2020.123434
  30. Zhang, D.Q., Jinadasa, K.B.S.N., Gersberg, R.M., Liu, Y., Tan, S.K. & Ng, W.J. (2015). Application of constructed wetlands for wastewater treatment in tropical and subtropical regions (2000-2013). Journal of Environmental Sciences, 30, 1, pp. 30-46. DOI:10.1016/j.jes.2014.10.013
Go to article

Authors and Affiliations

Pimprapa Chaijak
1
ORCID: ORCID
Phachirarat Sola
2

  1. Thaksin University, Thailand
  2. Thailand Institute of Nuclear Technology (Public Organization) (TINT), Thailand
Download PDF Download RIS Download Bibtex

Abstract

The European Commission's ambitious plan to reduce CO2 emissions has a significant impact on the global automotive industry. Recent development of new diesel and petrol engines with direct injection is aimed at improving fuel efficiency while maintaining (or enhancing) engine performance. This naturally also increases the demands on the properties of the most stressed engine components (e.g., cylinder heads, engine blocks, pistons), which leads to the development of new materials. Presented work analysed the effect of different mold temperatures (60; 120; 180 °C) on mechanical, physical properties and microstructure of AlSi5Cu2Mg aluminium alloy. This alloy is currently being used for the production of cylinder head castings. The results showed that the changing mold temperature had an effect on mechanical properties (ultimate tensile strength and Young modulus values). SEM with EDX analysis of intermetallic phases revealed there were no size and morphology changes of Cu, Mg and Fe intermetallic phases when the mold temperature changed. No significant effect of different mold temperature on physical properties (thermal and electrical conductivity) and fracture mechanism occurred during experiment. Optimal combination of mechanical and physical properties of AlSi5Cu2Mg alloy was achieved using a permanent mold with temperature ranging from 120 to 180 °C.
Go to article

Bibliography

[1] Skrabulakova, E.F, Ivanova, M., Rosova, A., Gresova, E., Sofranko, M. & Ferencz, V. (2021). On electromobility development and the calculation of the infrastructural country electromobility coefficient. Processes. 9(2), 1-28. DOI: 10.3390/pr9020222.
[2] Murthy, V. & Girish, K. (2021). A comprehensive review of battery technology for E-mobility. Journal of the Indian chemical society. 98(10), 100173 DOI: 10.1016/j.jics.2021.100173.
[3] Trovao, J. (2021). Electromobility innovation trends [automotive electronics]. IEEE vehicular technology magazine. 16(3), 153-161. DOI: 10.1109/MVT.2021.3091798.
[4] Venticinque, S., Martino, B., Aversa, R., Natvig, M., Jiang, S. & Sard, R. (2021). Evaluation of innovative solutions for e-mobility. International journal of grid and utility computing. 12(2), 159-172. DOI: 10.1504/IJGUC.2021.114829.
[5] Hajdúch, P., Djurdjevic, M. B. & Bolibruchová, D. (2020). New trends in the production of aluminum castings for the automotive industry. Slévarenství. 1-2, 5-7.
[6] Hoag, K. & Dondlinger, B. (2016). Cylinder block and head materials and manufacturing. In Kevin Hoag & Brian Dondlinger (Eds.), Vehicular engine design (pp. 97-115). Springer, Vienna. DOI: 10.1007/978-3-7091-1859-77.
[7] Kores, S., Zak, H. & Tonn, B. (2008). Aluminium alloys for cylinder heads. Materials and Geoenvironment. 55, 307-317.
[8] Podprocká, R. & Bolibruchová, D. (2017). Iron intermetallic phases in the alloy based on Al-Si-Mg by applying manganese. Archives of Foundry Engineering. 17(3), 217-221. DOI: 10.1515/afe-2017-0118.
[9] Vincze, F., Tokár, M., Gegyverneki, G. & Gyarmati, G. (2020). Examination of the eutectic modifying effect of Sr on an Al-Si-Mg-Cu alloy using various technological parameters. Archives of Foundry Engineering. 20(3), 79-84. 10.24425/afe.2020.133334
[10] Djurdjevič, M.B., Vicario, I. & Huber, G. (2014). Review of thermal analysis applications in aluminium casting plants. Revista de Metalurgia. 50(1), 1-12. DOI: 10.3989/revmetalm.004
[11] Canales, A., Silva, J., Gloria, D. & Colar, R. (2010). Thermal analysis during solidification of cast Al-Si alloys. Thermochimica Acta. 510(1-2), 82-87. DOI: 10.1016/j.tca.2010.06.026.
[12] Tillová, E., Chalupová, M. (2009). Structural analysis of Al-Si alloys. Žilina: EDIS – vydavateľstvo ŽU.

Go to article

Authors and Affiliations

L. Širanec
1
ORCID: ORCID
D. Bolibruchová
1
ORCID: ORCID
M. Chalupová
1
ORCID: ORCID

  1. Department of Technological Engineering, Faculty of Mechanical Engineering, University of Žilina, Slovakia
Download PDF Download RIS Download Bibtex

Abstract

The paper presents analysis of the possibility of using selected hash functions submitted for the SHA-3 competition in the SDEx encryption method. The group of these functions will include the finalists of the SHA-3 competition, i.e. BLAKE, Grøstl, JH, Keccak, Skein. The aim of the analysis is to develop more secure and faster cryptographic algorithm compared to the current version of the SDEx method with SHA- 512 and the AES algorithm. When considering the speed of algorithms, mainly the software implementation will be taken into account, as it is the most commonly used.
Go to article

Authors and Affiliations

Artur Hłobaż
1

  1. Faculty of Physics and Applied Informatics, University of Lodz, Poland
Download PDF Download RIS Download Bibtex

Abstract

Hutch Diverticulum (HD) is defined as the protrusion of the mucosal and submucosal layer through the muscle bundles of the underlying detrusor muscle. HD is located at the vesicoureteral junction with a backward direction from the homolateral ureteral orifice. As far as its etiology is con-cerned, HD is caused either by a congenital muscle wall defect at the level where the Waldeyer’s fascia occupies the clefts between the vesical part of the homolateral ureter and the detrusor, or is associated with abortive ureteral duplication or defective incorporation of mesonephric duct into the bladder at the site of ureteral hiatus or finally is associated with the development of transient urethral obstruction. HD is usually unilateral and more common in male patients. It may be associated with the Ehlers-Danlos, Williams-Elfin and Menkes syndromes. HD usually occurs in childhood and rarely during adulthood. It is found in 0.2–13% of all children presenting with urinary tract infection. Through this short review article, we attempt to present in detail the most recent bibliographic data concerning this entity, focusing on pathophysiology, diagnostic approach, and treatment strategy.
Go to article

Authors and Affiliations

Ioanna Gkalonaki
1
ORCID: ORCID
Michail Anastasakis
1
Christina Panteli
1
Ioannis Patoulias
1

  1. First Department of Pediatric Surgery, Aristotle University of Thessaloniki, General Hospital “G. Gennimatas”, Thessaloniki, Greece
Download PDF Download RIS Download Bibtex

Abstract

We have numerically studied different designs of technologically feasible microstructured fibers with a germanium-doped core in order to obtain normal dispersion reaching possibly far in the mid infrared. Hexagonal, Kagome and the combination of both geometries were numerically examined with respect to different constructional parameters like pitch distance, filling factor of air holes, number of layers surrounding the core, and level of germanium doping in the core. Our analysis showed that the broadest range of normal dispersion reaching 2.81 μm, while keeping an effective mode area smaller than 30 μm2, was achieved for a hexagonal lattice and a 40 mol% GeO2 doped core. The proposed fibers designs can be used in generation of a normal dispersion supercontinuum reaching the mid-IR region.

Go to article

Authors and Affiliations

J. Biedrzycki
K. Tarnowski
W. Urbańczyk

This page uses 'cookies'. Learn more