Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The Tungsten Inert Gas (TIG) welding processes one of the prevalent methods used for welding aluminum alloys. TIG welding is most commonly used due to its superiority in welding less dense materials. The most prevalent issues encountered with TIG welding aluminium alloys are porosity creation and cracking due to solidification, both of which result in lower mechanical properties. Because of the metal’s susceptibility to heat input, this occurs. The current work is the result of a desire to improve the mechanical properties of dissimilar aluminium metals: AA5052-H32 & AA5083-H111. The process parameters of TIG welding are optimized towards eliminating the previously discussed failure scenarios. Various optimization techniques exist towards obtaining optimizing processes such as Response Surface Methodology (RSM), Genetic Algorithm (GA), Artificial Neutral Network (ANN), Flower pollination algorithm, Taguchi method etc, The Taguchi method was chosen for the optimization of process parameters due to its inherent nature of solving problems of singular variance. The optimal parameters combination was determined i.e. welding current at 170 A, filler rod diameter 2.4 mm and Gas flow rate of 11 lpm. The optimized input parameter was used to TIG weld the confirmation specimen which are further investigated for mechanical and metallurgical characterizations. The parameters were optimized and the results indicate that the input current was found to be the most contributing towards improving mechanical properties over all the process parameters.
Go to article

Authors and Affiliations

D. Antony Prabu
1
ORCID: ORCID
K.S. Jayakumar
2
ORCID: ORCID
E. Madhavan Pillai
1
ORCID: ORCID
G. Kumaresan
3
ORCID: ORCID

  1. LOYOLA-ICAM College of Engineering and Technology (LICET), Department of Mechanical Engineering, Loyola Campus, Chennai, Tamil Nadu, India
  2. Sri Sivasubramaniya Nadar College of Engineering, Department of Mechanical Engineering, Chennai, Tamil Nadu, India
  3. Bannari Amman Institute of Technology, Department of Mechanical Engineering, Sathyamangalam, Erode, Tamil Nadu, India

This page uses 'cookies'. Learn more