Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The excessive use of pesticides is a problem in most parts of the world today because of their broad and unspecific target range that is considerably harmful. The accumulation of several chemical insecticide residues based on chlorpyrifos-methyl, organochlorine, different isomers of HCH, DDT etc., in Triticum aestivum L. plants can be dangerous. Hence, there is an urgent need to develop potential and safer alternative measures. Wheat (Triticum aestivum L.) is a major cereal crop grown and used for food, animal feed, beverages and furniture accessories in most parts of the world. It also serves as a host to various insect pests. Our previous studies showed the insecticidal potency and specificity of short ssDNA oligonucleotides from the inhibitor of apoptosis (IAP-2 and IAP-3) genes of Lymantria dispar multicapsid nuclear polyhedrosis virus (LdMNPV) against gypsy moth (L. dispar) larvae, a possible insect pest of non-host plants like wheat. Consequently, the present study analyzes the effects of ssDNA oligonucleotides used as DNA insecticides on wheat (T. aestivum) plant biomass, plant organs and some biochemical parameters as a marker of the safety margin on non-target organisms. The results obtained on plant biomass showed that groups treated with ssDNA oligonucleotides at concentrations of 0.01 pmol · μl−1, 0.1 pmol · μl−1 and 1 pmol · μl−1 varied in comparison with the control group, but remained harmless to plant growth and development, while the treatment concentration of 0.001 pmol · μl−1 did not affect the plant biomass. The glucose, protein and phosphorous biochemical parameters, analyzed after 21 days, showed that the ssDNA oligonucleotides used were equally safe. The data obtained for the plant organs (leaves and root lengths) indicate that the phenomenon of DNA insecticides can be further studied and developed for plant protection while improving the growth of plant organs even for a non-target organism such as wheat T. aestivum plants.

Go to article

Authors and Affiliations

Palmah Mutah Nyadar
Volodymyr Oberemok
Alexander Omelchenko
Selime Kerimova
Eleonora Seidosmanova
Alisa Krasnodubiets
Maksym Shumskykh
Victoria Bekirova
Download PDF Download RIS Download Bibtex

Abstract

Biogas plants processing municipal waste are very important investments from the point of view of waste management and also the sustainable development of urban infrastructures. They may also have a potentially negative impact on the environment in the form of odour emission. Olfactometry is the main method for odour impact assessment. Field olfactometry allows for performing a wide range of tests, the results of which are practically instantaneous. The purpose of this work is to provide a tool for assessing the odour impacts of municipal management facilities, including biogas plants processing municipal waste and evaluating the correctness of processes carried out in these plants, namely the method of field olfactometry. In order to compare obtained olfactometric results with the concentration of chemical compounds, chromatographic tests were also carried out using the Photovac Voyager portable chromatograph (hydrogen sulphide – H2S and dimethyl sulphide – (CH3)2S. The results of the odour concentration tests are in line with the results of odorant concentration tests and indicate that cod is strongly related to the concentration of hydrogen sulphide. Thanks to this method, it is possible to find a relationship between odour nuisance, technological processes used in the plant and the type of treated waste.

Go to article

Authors and Affiliations

Marta Wiśniewska
1
Andrzej Kulig
1
Krystyna Lelicińska-Serafin
1

  1. Warsaw University of Technology, Poland
Download PDF Download RIS Download Bibtex

Abstract

This article presents a sequential model of the heating-remelting-cooling of steel samples based on the finite element method (FEM) and the smoothed particle hydrodynamics (SPH). The numerical implementation of the developed solution was completed as part of the original DEFFEM 3D package, being developed for over ten years, and is a dedicated tool to aid physical simulations performed with modern Gleeble thermo-mechanical simulators. Using the developed DEFFEM 3D software to aid physical simulations allows the number of costly tests to be minimized, and additional process information to be obtained, e.g. achieved local cooling rates at any point in the sample tested volume, or characteristics of temperature changes. The study was complemented by examples of simulation and experimental test results, indicating that the adopted model assumptions were correct. The developed solution is the basis for the development of DEFFEM 3D software aimed at developing a comprehensive numerical model allows the simulation of deformation of steel in semi solid state.

Go to article

Authors and Affiliations

Marcin Hojny

This page uses 'cookies'. Learn more