Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 7
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The aim of this study was to investigate the impact of industrial waste landfill on the release of polychlorinated biphenyls (PCBs) on the environment with reference to water flow directions. 10 study plots were designated around the landfill site. Soil samples were taken from different soil layers. Plants: Solidago canadensis (leaves, stem), Quercus L. (leaves), and Poaceae were tested on PCBs contents. Groundwater samples were taken from piezometers. PCBs in the samples were determined by gas chromatography with an electron capture detector (GC / ECD).The highest accumulation of PCBs congeners was observed in the topsoil layers and decreased with the sampling depth. The dominant PCBs congeners in soil were PCB 28 and PCB 138, in plants PCB 28 and PCB 52. The most significant PCBs accumulation in the topsoil layer occurred in the research area on which the largest amount of waste was deposited and was equal to 14.2 ng/g. The largest sum of determined PCBs congeners was found in Solidago canadensis leaves – 3.26 ng/g and Quercus L. leaves – 3.32 ng/g. PCB 28 and PCB 52 were capable of translocation from soil to plants. It was found that the water flow direction did not affect PCB content in soils
Go to article

Bibliography

  1. ATSDR. (2000). Toxicological profile for polychlorinated biphenyls (PCBs), Atlanta, GA, US Department of Health and Human Services, Public Health Service, Agency for Toxic Substances and Disease Registry.
  2. Arp H.P.H., Morin N.A.O., Andersson P.L., Hale S.E., Wania F., Breivik K. & Breedveld G.D. (2020). The presence, emission and partitioning behavior of polychlorinated biphenyls in waste, leachate and aerosols from Norwegian waste-handling facilities, Science of The Total Environment, 715, 136824. DOI: 10.1016/j.scitotenv.2020.136824
  3. Böhme, F., Welsch-Pausch, K. & McLachlan, M.S. (1999). Uptake of airborne semivolatile organic compounds in agricultural plants: Field measurements of interspecies variability. Environ. Sci. Technol. DOI: 10.1021/es980832l
  4. Degrendele, C., Fiedler, H., Kočan, A., Kukučka, P., Přribylová, P., Prokeš R, Klánová, J. & Lammel, G. (2020). Multiyear levels of PCDD/Fs, dl-PCBs and PAHs in background air in central Europe and implications for deposition. Chemosphere. 240: 124852. DOI: 10.1016/j.chemosphere.2019.124852
  5. Dias-Ferreira, C., Pato, R.L., Varejão, J.B., Tavares, A.O. & Ferreira, A.J.D. (2016). Heavy metal and PCB spatial distribution pattern in sediments within an urban catchment—contribution of historical pollution sources. J Soils Sediments. 16: 2594–2605. DOI: 10.1007/s11368-016-1542-y
  6. Erickson, M.D. (2001). Introduction: PCB Properties, Uses, Occurrence, and Regulatory History, in: PCBs: Recent Advances in Environmental Toxicology and Health Effects.
  7. Gabryszewska, M., Gworek, B. & Garlej, B. (2018). PCB content in soil and plants along routes with high traffic intensity. Desalin. WATER Treat. DOI: 10.5004/dwt.2018.22398
  8. Gabryszewska, M. & Gworek, B. (2020a). Impact of municipal and industrial waste incinerators on PCBs content in the environment. Plos One. DOI: 10.1371/journal.pone.0242698
  9. Gabryszewska, M. & Gworek, B. (2020b). Polychlorinated biphenyls in soils of diversified use. Przem. Chem. DOI: 10.15199/62.2020.12.18 (in Polish)
  10. Gabryszewska, M. & Gworek, B. (2020c). Municipal waste landfill as a source of polychlorinated biphenyls releases to the environment, Peer J, in press, DOI 10.7717/peerj.10546
  11. Gworek, B., Dmuchowski, W., Koda, E., Marecka, M., Baczewska, A.H., Bragoszewska, P., Sieczka, A. & Osiński, P. (2016). Impact of the municipal solid waste lubna landfill on environmental pollution by heavy metals. Water (Switzerland). DOI: 10.3390/w8100470
  12. Hansen, L. G. & Robertson, L. W. (2001). PCB Recent advances in environmental toxicology and health effects The University Press of Kentucky.
  13. Hue, N.T., Thuy, N.T.T. & Tung, N.H. (2016). Polychlorobenzenes and polychlorinated biphenyls in ash and soil from several industrial areas in North Vietnam: residue concentrations, profiles and risk assessment. Environ Geochem Health DOI:10.1007/s10653-015-9726-8
  14. Kaya, D., Imamoglu, I., Sanin, F.D. & Sowers, K.R. (2018). A comparative evaluation of anaerobic dechlorination of PCB-118 and Aroclor 1254 in sediment microcosms from three PCB-impacted environments. J. Hazard. Mater. DOI: 10.1016/j.jhazmat.2017.08.005
  15. Kodavanti, P.R.S. (2017). Polychlorinated Biphenyls (PCBs). Ref. Modul. Neurosci. Biobehav. Psychol. DOI: 10.1016/B978-0-12-809324-5.03955-9
  16. Kuzu, S.L., Saral, A., Demir, S., Coltu, H., Can, M. & Beyaz, T. (2013). Estimation of atmospheric PCB releases from industrial facilities in Turkey, Atmospheric Pollution DOI:10.5094/APR.2013.048
  17. Liu, J. & Schnoor, J.L. (2008). Uptake and translocation of lesser-chlorinated polychlorinated biphenyls (PCBs) in whole hybrid poplar plants after hydroponic exposure. Chemosphere. DOI: 10.1016/j.chemosphere.2008.08.009
  18. Liu, X., Fiedler, H., Gong, W., Wang, B. & Yu, G. (2018). Potential sources of unintentionally produced PCB, HCB, and PeCBz in China: A preliminary overview. Front. Environ. Sci. Eng. DOI: 10.1007/s11783-018-1036-9
  19. Melnyk, A., Dettlaff, A., Kuklińska, K., Namieśnik, J. & Wolska, L. (2015). Concentration and sources of polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) in surface soil near a municipal solid waste (MSW) landfill. Sci. Total Environ. DOI: 10.1016/j.scitotenv.2015.05.092
  20. Murphy, T.J., Formanski, L.J., Brownawell, B. & Meyer, J.A. (1985). Polychlorinated biphenyl emissions to the atmosphere in the Great Lakes region. Municipal landfills and incinerators. Environmental Science Technology. 1985, 19 (10), pp. 942–946. DOI: 10.1021/es00140a009
  21. Norris, G., Brinstingl, J., Plant, S. J., Cui, S. & Mayell, P. (1999). A case study of the management and remediation of soil contaminated with polychlorinated biphenyls. Engineering Geology, 53, 177-185. DOI: 10.1016/S0013-7952(99)00031-9
  22. Rosik-Dulewska, C. & Karwaczynska, U. (2008). Methods of leaching contaminants from mineral waste in the aspect of its potential utilization in hydrotechnical construction‎, Rocznik Ochrona Środowiska, 10, pp.‏ 205-219.(in Polish)
  23. Ti, Q., Gu, C., Liu, C., Cai, J., Bian, Y., Yang, X., Song, Y., Wang, F., Sun, C. & Jiang, X. (2018). Comparative evaluation of influence of aging, soil properties and structural characteristics on bioaccessibility of polychlorinated biphenyls in soil. Chemosphere. DOI: 10.1016/j.chemosphere.2018.07.111
  24. Travis, C.C. & Hester, S.T. (1991). Global chemical pollution. Environ. Sci. Technol. 25 5: 814–819.
  25. Whitfield Åslund, M.L., Rutter, A., Reimer, K.J. & Zeeb, B.A. (2008). The effects of repeated planting, planting density, and specific transfer pathways on PCB uptake by Cucurbita pepo grown in field conditions. Sci. Total Environ. DOI: 10.1016/j.scitotenv.2008.07.066
  26. WHO. (1992). IPCS INTERNATIONAL PROGRAMME ON CHEMICAL SAFETY Health and Safety Guide No. 68 POLYCHLORINATED BIPHENYLS (PCBs) AND POLYCHLORINATED TERPHENYLS (PCTs) HEALTH AND SAFETY GUIDE [WWW Document]. WHO. URL http://www.inchem.org/documents/hsg/hsg/hsg68.htm#SubSectionNumber:2.5.2 (accessed 21.07.2020).
  27. Yu, L., Duan, L., Naidu, R. & Semple, K.T. (2018). Abiotic factors controlling bioavailability and bioaccessibility of polycyclic aromatic hydrocarbons in soil: Putting together a bigger picture. Sci. Total Environ. DOI: 10.1016/j.scitotenv.2017.09.025
Go to article

Authors and Affiliations

Marta Gabryszewska
1
Barbara Gworek
1

  1. Institute of Environmental Protection - National Research Institute, Poland
Download PDF Download RIS Download Bibtex

Abstract

The paper attempts to assess the possibility of using typical check structures equipped with sluice gates to measure the volumetric flow rate in the irrigation channels. The submerged flow through the sluice gate was considered. Experimental tests on a model of typical check structure in 1:2 scale were carried out. The conducted analyzes confirmed the possibility of using discharge equation for submerged flow through the sluice gate to estimate the water flow rate in the irrigation channels. In order to obtain accurate values of flow rate, the downstream tailwater depth should be measured at the appropriate distance from the sluice gate. For different values of gate-opening height, the downstream water depth measurement locations allowing for a correct flow estimation were indicated. This approach might be useful in calibration of other designs of sluice gates for flow measurements.

Go to article

Authors and Affiliations

Janusz Kubrak
ORCID: ORCID
Elżbieta Kubrak
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

Organisations have to take into account rapid, non-linear changes in their environment that build pressure on the company‘s development strategy. Therefore, one of the key challenges and paradoxes is to how maintain mutual coherence between different areas of the organisation and simultaneously leverage being ambidextrous so as to continue with exploration and exploitation activities. The main goal of this paper is to present research results on the relation between strategic coherence and company ambidexterity.
Strategic coherence is a proprietary concept allowing for measurement of the balance between the vertical and horizontal adjustment of an organisation. Vertical adjustment is the relation between strategy and the elements of the business model measured by: 1) the cascading of goals, 2) feedback on matching elements of the business model according to strategy, and 3) control over financial results and strategy implementation. Horizontal adjustment refers to matching the business model components measured by: 1) creating value, 2) capturing value, and 3) creating a synergy effect) Meanwhile, ambidexterity is determined by four areas: 1) company goals, 2) products, 3) market and 4) competitive advantage for both exploration and exploitation activities. The research survey was conducted with the use of the CATI method. Altogether, 400 medium-sized and large Polish companies were included in the study. To calculate the dependencies, the Pearson correlation coefficient was applied. The companies studied achieved similar results in terms of strategic coherence dimensions, as the vertical adjustment was 6.47, and the horizontal was 6.29 on a scale of 1–10. Meanwhile, in terms of ambidexterity, the companies achieved a moderate level, with the average value for exploration being 4.26, and that for exploitation 4.51 on a scale from 1 to 7. Based on correlation analysis, the relation between both variables has the shape of an inverted “U” with the most favourable point for ambidexterity at the “high strategic coherence” level. This study is a comprehensive guide for practitioners, and presents development guidelines for companies. The value of this research is an empirically validated framework that describes relations based on a dynamic balance between strategic coherence and two types of adjustment in the area of regulation – vertical and horizontal, as well as ambidexterity with two types of activity in the area of operations: exploration and exploitation. This study is unique and explores uncharted areas of strategic management.
Go to article

Authors and Affiliations

Paweł Mielcarek
1

  1. Department of Management, Poznan University of Business and Economics, Poland
Download PDF Download RIS Download Bibtex

Abstract

In the collection of Silesian kwartniks of the National Museum in Wrocław there is a unique, unidentified example of type Fbg 1109. Previous attempts to attribute this coin to the Duchies of Wrocław or Świdnica were based on unclear premises. Re-analysis of the coin dies allows for the presentation of a new attribution proposal.
Go to article

Authors and Affiliations

Dawid Maciejczuk
1
ORCID: ORCID

  1. Institute of ArchaeologyUniversity of Wrocław
Download PDF Download RIS Download Bibtex

Abstract

An analysis of energy efficiency for transcritical compression unit with CO2 (R744) as the refrigerant has been carried out using empirical operating characteristics for the two-phase ejector. The first stage of the refrigerant compression is carried out in the ejector. The criterion adopted for the estimation of energy efficiency for the cycle is the coefficient of performance COP. The analysis is performed for the heat pump and refrigeration systems. The results of COP for the systems with the ejector has been compared with the COPL values for the single stage Linde cycle.

Go to article

Authors and Affiliations

Joachim Kozioł
Wiesław Gazda
Łukasz Wilżyński
Download PDF Download RIS Download Bibtex

Abstract

The effects of using three different biopreparations (one natural N2 and two commercial Kl and K2) in petroleum hydrocarbons age-polluted clay soil were studied. The samples of soil were taken from refinery in Czechowice-Dziedzice and classified as heavily degraded in proportion C:N = 100:0,7. Changes after introducing biopreparations into soil (bioaugmentation), their influence on microflora development and effects of removing polluting substances were studied. Bioaugmentation did not result in intensive growth of bacterial number, which was on the control sample's level during experiment. Soil's biodegradation activity also increased in level smaller than expected.
Go to article

Authors and Affiliations

Ewa Zabłocka-Godlewska
Korneliusz Miksch
Download PDF Download RIS Download Bibtex

Abstract

In this interview, conducted during the XXIII International Congress of Historical Sciences in Poznań (2022), Olufunke Adeboye (Professor of Social History at the University of Lagos, Nigeria) discusses the problems of decolonisation of African history, the relations between academic historiography and popular history, new trends in historical writing, the importance of theory for historical research, and the problems of historical education in Nigeria.
Go to article

Authors and Affiliations

Ewa Domańska
1
ORCID: ORCID

  1. Uniwersytet im. Adama Mickiewicza w Poznaniu

This page uses 'cookies'. Learn more