Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

In cellular networks, cells are grouped more densely around highly populated areas to provide more capacity. Antennas are pointed in accordance with local terrain and clutter to reduce signal shadows and interference. Hardware parameters are easily set during installation but difficult to change thereafter. In a dynamic environment of population migration, there is need to continuously tune network parameters to adapt the network performance. Modern mobile equipment logs network usage patterns and statistics over time. This information can be used to tune soft parameters of the network. These parameters may include frequency channel assignment or reuse, and transmitter radiation power assignment to provide more capacity on demand. The paper proposes that by combining the frequency and power assignments, further optimisation in resource allocation can be achieved over a traditional frequency assignment. The solution considers the interference, traffic intensity and use of priority flags to bias some edges. An Edge Weight Power and Frequency Assignment Algorithm is presented to solve the resource allocation problem in cellular networks. The paper also analyses the performance improvements obtained over that of the Edge Weight Frequency Assignment Algorithm. The results show that the proposed algorithm improves the performance of the Edge Weight Frequency Assignment Algorithm depending on the initial structure of the graph.

Go to article

Authors and Affiliations

O.S. Pharatlhatlhe
J.S.J. Daka
E. Gower
Download PDF Download RIS Download Bibtex

Abstract

This article presents a consistent solution of Transmit Power Control in centralized (clustered) wireless network with and without jamming. Depending on the policy assumed, appropriate solutions are applied to minimize the power used in a system or to satisfy expected Quality of Service. Because of specific nature of the system there is no optimal solution which can be applied in practice. Correctness and effectiveness of four proposed Transmit Power Control algorithms was presented in the form of computer simulation results in which the system capacity, mean power used and the number of successful links were described.

Go to article

Authors and Affiliations

Jarosław Michalak
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

In order to overcome the shortcomings of the dolphin algorithm, which is prone to falling into local optimum and premature convergence, an improved dolphin swarm algorithm, based on the standard dolphin algorithm, was proposed. As a measure of uncertainty, information entropy was used to measure the search stage in the dolphin swarm algorithm. Adaptive step size parameters and dynamic balance factors were introduced to correlate the search step size with the number of iterations and fitness, and to perform adaptive adjustment of the algorithm. Simulation experiments show that, comparing with the basic algorithm and other algorithms, the improved dolphin swarm algorithm is feasible and effective.

Go to article

Authors and Affiliations

Y. Li
X. Wang

This page uses 'cookies'. Learn more