Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 4
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

As a rule, nitrates are present in all natural water bodies. Their increased concentrations are connected with the discharge of insufficiently treated wastewater from industrial and communal enterprises, agricultural and livestock complexes. Recent scientific publications concerning treatment methods for nitrates removal from natural water and wastewater were analyzed in order to create effective and low-waste technology for obtaining high quality water. It has been established that the ion exchange method is quite effective for removing nitrates from water. In the paper, the processes of ion exchange removal of nitrates from water on low-axis anionite in DOWEX Marathon WBA in Сl- form were investigated. During the sorption of nitrates with a concentration of 186, 205, 223 and 2200 mg/dm3, it was established that the full exchangeable dynamic capacity was 1.075, 1.103, and 1.195, 1.698 g-eq/dm3, respectively. To regenerate anionite, solutions of ammonia as well as potassium chloride, ammonium chloride and potassium carbonate were used in this work. The choice of potassium and ammonium compounds is due to the prospect of further use of regeneration solutions for the production of liquid fertilizers.
Go to article

Bibliography

  1. Alguacil-Duarte, F., González-Gómez, F. & Romero-Gámez, M. (2022). Biological nitrate removal from a drinking water supply with an aerobic granular sludge technology: An environmental and economic assessment. Journal of Cleaner Production, 367. DOI:10.1016/j.jclepro.2022.133059
  2. Bodzek, M. (2019). Membrane separation techniques – removal of inorganic and organic admixtures and impurities from water environment – review. Archives of Environmental Protection, 45, 4, pp. 4–19. DOI:10.24425 / aep.2019.130237.
  3. Boubakri, A., Al-Tahar Bouguecha, S. & Hafiane, A. (2022). FO–MD integrated process for nitrate removal from contaminated groundwater using seawater as draw solution to supply clean water for rural communities. Separation and Purification Technology, 298. DOI:10.1016/j.seppur.2022.121621
  4. Gutiérrez, M., Biagioni, R.N., Alarcón-Herrera, M.T. & Rivas- Lucero, B.A. (2018). An overview of nitrate sources and operating processes in arid and semiarid aquifer systems. Science of the Total Environment, 624, pp. 1513–1522. DOI:10.1016/j. scitotenv.2017.12.252
  5. Hansen, B., Sonnenborg, T.O., Møller, I., Bernth, J.D., Høyer, A., Rasmussen, P., Sandersen P.B.E. & Jørgensen, F. (2016). Nitrate vulnerability assessment of aquifers. Environmental Earth Sciences, 75, 12. DOI:10.1007/s12665-016-5767-2
  6. Kaushal, S.S. (2016). Increased salinization decreases safe drinking water. Environ. Sci. Technol., 50, pp. 2765–2766. doi:10.1021/ acs.est.6b00679.
  7. Królak, E. & Raczuk, J. (2018). Nitrate concentration-related safety of drinking water from various sources intended for consumption by neonates and infants. Archives of Environmental Protection, 44, 1, pp. 3–9. DOI:10.24425/118176
  8. National report on drinking water quality and drinking water supply in Ukraine in 2021. Database ‘Ministry of Regional Development of Ukraine’ (in Ukrainian).
  9. Nujić, M., Milinković, D. & Habuda-Stanić, M. (2017). Nitrate removal from water by ion exchange. Croatian journal of food science and technology, 9, 2, pp. 182–186. DOI:10.17508/ CJFST.2017.9.2.15
  10. Preetham, V. & Vengala, J. (2023). Adsorption isotherm, kinetic and thermodynamic studies of nitrates and nitrites onto fish scales. In Recent Advances in Civil Engineering, pp. 429–442. doi:10.1007/978-981-19-1862-9_27
  11. Remeshevska, I., Trokhymenko, G., Gurets, N., Stepova, O., Trus, I. & Akhmedova, V. (2021). Study of the ways and methods of searching water leaks in water supply networks of the settlements of Ukraine. Ecological Engineering and Environmental Technology, 22, 4, pp. 14–21. DOI:10.12912/27197050/137874
  12. Song, Q., Zhang, S., Hou, X., Li, J., Yang, L., Liu, X. & Li, M. (2022). Efficient electrocatalytic nitrate reduction via boosting oxygen vacancies of TiO2 nanotube array by highly dispersed trace cu doping. Journal of Hazardous Materials, 438. DOI:10.1016/j. jhazmat.2022.129455
  13. Trus, I., Gomelya, M., Skiba, M., Pylypenko, T. & Krysenko, T. (2022). Development of Resource-Saving Technologies in the use of sedimentation inhibitors for reverse osmosis installations. J. Ecol. Eng., 23(1), pp. 206–215. DOI:10.12911/22998993/144075
  14. Trus, I. (2022). Optimal conditions of ion exchange separation of anions in low-waste technologies of water desalination. Journal of Chemical Technology and Metallurgy, 57, 3, pp. 550–558.
  15. Trusa, I. M., Gomelya, M. D. & Tverdokhlib, M. M. (2021). Evaluation of the contribution of ion exchange in the process of demanganization with modified cation exchange resin ku-2- 8. Journal of Chemistry and Technologies, 29, 4, pp. 540–548. DOI:10.15421/jchemtech.v29i4.242561
  16. Trus, I. & Gomelya, M. (2022). Low-waste technology of water purification from nitrates on highly basic anion exchange resin. Journal of Chemical Technology and Metallurgy, 57, 4, pp. 765–772. https://dl.uctm.edu/journal/node/j2022-4/14_21- 93_br4_2022_pp765-772.pdf
  17. Trusb, I., Gomelya, M., Skiba, M. & Vorobyova, V. (2021). Promising method of ion exchange separation of anions before reverse osmosis. Archives of Environmental Protection, 47, 4, pp. 93–97. DOI:10.24425/aep.2021.139505
  18. Trus, I., Gomelya, N., Halysh, V., Radovenchyk, I., Stepova, O. & Levytska, O. (2020). Technology of the comprehensive desalination of wastewater from mines. Eastern-European Journal of Enterprise Technologies, 3(6–105), pp. 21–27. DOI:10.15587/1729-4061.2020.206443 Vasilache, N., Cruceru, L., Petre, J., Chiriac, F. L., Paun, I., Niculescu, M., Pirvu F. & Lupu, G. (2018). The removal of nitrate from drinking water, natural water by ion exchange using ion exchange resin, purolite A520E and A500. Iternational Symposium “The Environment and the Industry”, SIMI 2018, Proceedings Book DOI:10.21698/simi.2018.fp53 Voutchkova, D.D., Schullehner, J., Rasmussen, P. & Hansen, B. (2021). A high-resolution nitrate vulnerability assessment of sandy aquifers (DRASTIC-N). Journal of Environmental Management, 277. DOI:10.1016/j.jenvman.2020.111330 Ward, M.H., Jones, R.R., Brender, J.D., de Kok, T.M., Weyer, P. J., Nolan, B. T., Vilanueva C.M. & van Breda, S.G. (2018). Drinking water nitrate and human health: An updated review. International Journal of Environmental Research and Public Health, 15, 7. DOI:10.3390/ijerph15071557 Wiśniowska, E. & Włodarczyk-Makuła, M. (2020). Removal of nitrates and organic compounds from aqueous solutions by zero valent (ZVI) iron reduction coupled with coagulation/ precipitation process. Archives of Environmental Protection, 46, 3, pp. 22–29. DOI: 10.24425 / aep.2020.134532.
  19. Zabłocki, S., Murat-Błażejewska, S., Trzeciak, J.A. & Błażejewski, R. (2022). High-resolution mapping to assess risk of groundwater pollution by nitrates from agricultural activities in Wielkopolska Province. Poland. Archives of Environmental Protection, 48, 1, pp. 41–57. DOI:10.24425/aep.2022.140544
Go to article

Authors and Affiliations

Inna Trus
1
ORCID: ORCID
Mukola Gomelya
1
ORCID: ORCID
Vita Halysh
1
ORCID: ORCID
Mariia Tverdokhlib
1
ORCID: ORCID
Iryna Makarenko
1
Tetiana Pylypenko
1
ORCID: ORCID
Yevhen Chuprinov
2
ORCID: ORCID
Daniel Benatov
1
ORCID: ORCID
Hennadii Zaitsev
2

  1. National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute», Kyiv, Ukraine
  2. State University of Economics and Technology: Kryvyi Rih, Ukraine
Download PDF Download RIS Download Bibtex

Abstract

This study looks at determining the main trends in the application of microwaves on plants in agricultural production in the processing of grain material, it provides examples of their effectiveness and an overview of the use of microwaves on plants available on the Russian market. Additionally, the research studied the experience and developments of leading scien-tists in the field of microwave radiation. Analysis of the available sources provided information on the positive effect of microwave radiation in the processing of crops. The use of microwaves on plants during drying destroys pathogens and bacteria, in particular, microwave processing of red lentils reduces grey mould damage by up to 30%. Positive results are also noted in the microwave processing of other crops, providing an increase in germination capacity of up to 7% and yield growth of up to 6%. The microwave plant market in Russia is represented mainly by dryers, and the use of microwaves on plants combining several functions of drying, disinfection, and pre-sowing stimulation.
Go to article

Authors and Affiliations

Fedor A. Kipriyanov
1
ORCID: ORCID
Petr A. Savinykh
2
ORCID: ORCID
Alexey Yu. Isupov
2
Yulia A. Plotnikova
1
Natalia A. Medvedeva
1
Svetlana V. Belozerova
1

  1. Federal State Budgetary Educational Institution of Higher Professional Education Vologda State Dairy Farming Academy, st. Schmidt, 2, 160555, Molochnoe, Vologda, Russia
  2. Federal Agricultural Research Center of the North-East, Kirov, Russian Federation
Download PDF Download RIS Download Bibtex

Abstract

The article discusses the option for the application of the methodology for the solution of boundary value problems on the conformal mapping for the calculation of filtration process in the horizontal systematic drainage, provided that the drain is installed at a different depth. In particular, the case of methods combining fictitious areas and quasiconformal mappings for solving nonlinear boundary conditions problems for calculating filtration regimes in soils with free sections of boundaries (depression curves) and intervals of the “drainage” type. As an example, the authors designed a hydrodynamic flow grid, determined the values of the flows to the drain, established a section line and elicited other process characteristics. The algorithm for the numerical solution of model nonlinear boundary conditions problems of quasiconformal reflection in areas bounded by two equipotential lines and two flow lines, when for one of the sections, the boundary is an unknown (free) curve with fixed and free ends. The conducted numerical calculations prove that the problems and algorithms of their numerical solution, with a relatively small iterations number (k = 141) suggested in the paper, can be applied in the simulation of nonlinear filtration processes that arise in horizontal drainage systems. Total filtration flow obtained Q = 0.9 dm3·s–1; flow for drains Q1 = 0.55 dm3·s–1 and Q2 = 0.35 dm3·s–1 are quite consistent with practically determined values.
Go to article

Authors and Affiliations

Volodymyr Havryliuk
1
ORCID: ORCID
Andrii Bomba
2
ORCID: ORCID
Oleg Pinchuk
2
ORCID: ORCID
Ievgenii Gerasimov
2
ORCID: ORCID
Serhii Klimov
2
ORCID: ORCID
Mykola Tkachuk
2
ORCID: ORCID
Vasyl Turcheniuk
2
ORCID: ORCID

  1. Rivne State University of Humanities, Rivne, Ukraine
  2. National University of Water and Environmental Engineering, Rivne, 11 Soborna St., 33028, Ukraine
Download PDF Download RIS Download Bibtex

Abstract

The paper discusses the effect of upsetting ratio on distribution of the microhardness in longitudinal sections of hydroformed axisymmetric elements made from P265TR1 steel. The experimental research of hydroforming was carried out at a special stand which included a press with tooling and a hydraulic feeding system of oil. The measurements of microhardness were taken with a MATSUZAWA MMT-X3 Vickers hardness tester at a load of 100 g. The samples used in the tests were prepared from tube segments with a thin-wall ratio of 0.045. In the experiment, steel components were formed at upsetting coefficients of 0.07 and 0.09. For an established course of pressure and upsetting force, a series of steel components with exact representation of the die-cavity was formed. The paper provides a comparison of the microhardness distributions in three zones of longitudinal sections of axisymmetric elements at different degrees of material deformation. The greatest values of microhardness occurred in the area of cap for components at an upsetting coefficient 0.09.

Go to article

Authors and Affiliations

T. Miłek

This page uses 'cookies'. Learn more