Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 5
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The article describes the development of a model problem for electrocoagulation treatment of industrial wastewater taking into account changes in voltage and current. The study included computer simulation of the change in the concentration of iron at the output of the electrocoagulator at variable current levels. The laboratory-scale plant was developed for the photocolorimetric analysis of the iron-containing coagulant. It consisted of a flowing opaque cell through which water is pumped with a constant flow and also the block for processing and storage of information. Such structure allows to reduce human participation in the measurement process and to ensure the continuity of measurement without any need for sampling of the tested material, as well as to reduce the measurement cost. During the processing of results, graphical dependences were determined between RGB-components of water colour and the corresponding concentration of total iron and Fe3+ in water.
Go to article

Bibliography

AL-BARAKAT H.S., MATLOUB F.K., AJJAM S.K., AL-HATTAB T.A. 2020. Modeling and simulation of wastewater electrocoagulation reactor. The First International Conference of Pure and Engineering Sciences (ICPES2020). Karbala, Iraq, 26– 27.02.2020. IOP Conference. Ser. Materials Science and Engineering. Vol. 871, 012002 p. 1–16. DOI 10.1088/1757-899X/ 871/1/012002.
ANNEM S. 2017. Determination of iron content in water. Capstone Project. MSc Thesis. Governors State University OPUS Open Portal to University Scholarship pp. 18.
ASSÉMIAN A.S., KOUASSI E.K. 2018. Removal of a persistent dye in aqueous solutions by electrocoagulation process: Modeling and optimization through response surface methodology. Water Air and Soil Pollution. Vol. 229(6), 184. DOI 10.1007/s11270-018-3813-2.
BARROS J.A.V.A., MOREIRA F., SANTOS G., WISNIEWSKI C., LUCCAS P.O. 2016. Digital image analysis for the colorimetric determination of aluminum, total iron, nitrite and soluble phosphorus in waters. Analytical Letters. Vol. 50(2) p. 414–430. DOI 10.1080/00032719.2016.1182542.
BOMBA A., KLYMIUK YU., PRYSIAZHNIUK I., PRYSIAZHNIUK O., SAFONYK A. 2016. Mathematical modeling of wastewater treatment from multicomponent pollution by using microporous particles. AIP Conference Proceedings. Vol. 1773, 040003 p. 1–11. DOI 10.1063/1.4964966.
BOMBA A., SAFONYK A. 2013. Mathematical modeling of aerobic wastewater treatment in porous medium. Zeszyty Naukowe WSInf. Vol. 12. Nr 1 p. 21–29.
FIRDAUSA M., ALWIB W., TRINOVELDIB F., RAHAYUC I., RAHMIDARD L., WARSITOA K. 2014. Determination of chromium and iron using digital image-based colorimetry. Procedia Environmental Sciences. Vol. 20 p. 298–304. DOI 10.1016/j.proenv.2014.03.037.
FORERO G., HERNÁNDEZ-LARA R., ROJAS O. 2020. Development of an electrocoagulation equipment for wall paint wastewater treat-ment. Ingeniería y Competitividad. Vol. 22(2) p. 1–10. DOI 10.25100/iyc.v22i2.9474.
GOVINDAN K., ARUMUGAM A., KALPANA M., RANGARAJANB М., SHANKARE P., JANG A. 2019. Electrocoagulants characteristics and applica-tion of electrocoagulation for micropollutant removal and transformation mechanism. ACS Applied Materials & Interfaces. Vol. 12(1) p. 1775–1788. DOI 10.1021/acsami.9b16559.
KAUR R., AMIT A. 2018. Treatment of waste water through electrocoagulation. Pollution Research. Vol. 37(2) p. 394–403. KHANDEGAR V., ACHARYA S., JAIN A.K. 2018. Data on treatment of sewage wastewater by electrocoagulation using punched aluminum electrode and characterization of generated sludge. Data in Brief. Vol. 18 p. 1229–1238. DOI 10.1016/j.dib.2018.04.020.
KOYUNCU S., ARIMAN S. 2020. Domestic wastewater treatment by real- scale electrocoagulation process. Water Science and Technology. Vol. 81(4) p. 656–667. DOI 10.2166/wst.2020.128.
LUKA G. S., NOWAK E., KAWCHUK J., HOORFAR M., NAJJARAN H. 2017. Portable device for the detection of colorimetric assays. Royal Society Open Science. Vol. 4(11), 171025 p. 1–13. DOI 10.1098/rsos.171025.
MASAWAT P., HARFIELD A., SRIHIRUN N., NAMWONG A. 2016. Green determination of total iron in water by digital image colorimetry. Analytical Letters. Vol. 50(1) p. 173–185. DOI 10.1080/00032719.2016.1174869.
PAVÓN T., MUNGUIA G., MOKHTAR A., ROMERO H., HUACUZ J. 2018. Photovoltaic energy-assisted electrocoagulation of a synthetic textile effluent. International Journal of Photoenergy. Vol. 3 p. 1–9. DOI 10.1155/2018/7978901.
PERREN W., WOJTASIK A., CAI Q. 2018. Removal of microbeads from wastewater using electrocoagulation. American Chemical Society Omega. Vol. 3 p. 3357–3364. DOI 10.1021/acsomega.7b02037.
POSAVČIĆ H., HALKIJEVIĆ I., VUKOVIĆ Ž. 2019. Application of electro-coagulation for water conditioning. Environmental Engineering – Inženjerstvo Okoliša. Vol. 6. No. 2 р. 59–70. DOI 10.37023/ee.6.2.3.
RAHMAN A.N., KUMAR N.K.M.F., GILAN U.J., JIHED E.E., PHILIP A., LINUS A.A., SHAHINAN NEN D., ISMAIL V. 2020. Kinetic study & statistical modelling of Sarawak Peat Water Electrocoagulation System using copper and aluminium electrodes. Journal of Applied Science & Process Engineering. Vol. 7(1) p. 439–456. DOI 10.33736/jaspe.2195.2020.
SAMIR A., CHELLIAPAN S., ZURIATI Z., AJEEL M., ALABA P. 2016. A review of electrocoagulation technology for the treatment of textile wastewater. Reviews in Chemical Engineering. Vol. 33 p. 263– 292.
SHANTARIN V.D., ZAVYALOV V.V. 2003. Optimization of processes of electrocoagulation treatment of drinking water. Nauchnye i Tekhnicheskiye Aspekty Okhrany Okruzhayushchey Sredy. No. 5 p. 62–85.
YASRI N., ARUMUGAM A., KALPANA M., SHU T., FULADPANJEH B., OLDENBURG T., TRIFKOVIC M., MAYER B., ROBERTS P.L.E. 2017. Electrocoagulation for the treatment of produced water [online]. University of Calgary. [Access 10.01.2021]. Available at: https://albertainnovates.ca/wp-content/uploads/2019/07/145-Nael-Yasri. pdf
YASRI N., HU J., KIBRIA MD. G., ROBERTS P. L. E. 2020. Electrocoagulation separation processes. Multidisciplinary advances in efficient separation processes. Chapter 6. ACS Symposium Series. Vol. 1348 р. 167–203. DOI 10.1021/bk-2020-1348.ch006.
YAVUZ Y., ÖGÜTVEREN Ü. B. 2018. Treatment of industrial estate wastewater by the application of electrocoagulation process using iron electrodes. Journal of Environmental Management. Vol. 207 p. 151–158. DOI 10.1016/j.jenvman.2017.11.034.
Go to article

Authors and Affiliations

Andrii Safonyk
1
ORCID: ORCID
Ivanna Hrytsiuk
1
ORCID: ORCID
Marko Klepach
1
ORCID: ORCID
Maksym Mishchanchuk
1
ORCID: ORCID
Andriy Khrystyuk
1
ORCID: ORCID

  1. National University of Water and Environmental Engineering, Institute of Automatics, Cybernetics and Computer Engineering, Soborna St, 11, Rivne, Rivnens’ka oblast, 33028, Ukraine
Download PDF Download RIS Download Bibtex

Abstract

High pressure die casting technology (HPDC) is a method enabling the production of shape-complex casts with good mechanical properties, with high repeatability of production within narrow tolerance limits. However, the casts show, to some extent, basic porosity, which may reduce their mechanical and qualitative properties. One of the main areas to focus on in order to reduce the porosity of casts is the correct design and structure of the gating and overflow system. Submitted article is devoted to the assessment of the connecting channel cross-section design for connecting the overflows to the cast on selected parameters of the casting process. Five different cross-section designs of connecting channels are considered, enabling the removal of gases and vapors from the volume during the molding. The connecting channels are designed with a constant width g = 10mm and variable height h1 = 1.50 mm, h2 = 1.25 mm, h3 = 1.00 mm, h4 = 0.75 mm and h5 = 0.6 mm. The primary monitored parameter is the gas entrapment in selected points of the cast. The following is an evaluation of the pressure conditions change in the mold cavity at the end of the filling mode and local overheating of the mold material just below the surface of the mold face. With regard to the monitored parameters, based on the performed analyzes, the most suitable design solution of the connecting channel is assessed and recommendations for the design and structure of the overflows and their connection to the cast are derived.
Go to article

Bibliography

[1] Gaspar, S., Pasko, J., Majernik, J. (2017). Influence of structure adjustment of gating system of casting mould upon the quality of die cast. Lüdenscheid: RAM-Verlag.
[2] Pasko, J., Gaspar, S. (2014). T echnological factors of die casting. Lüdenscheid: RAM-Verlag.
[3] Ruzbarský, J., Pasko, J., Gaspar, S. (2014). Techniques of Die casting. Lüdenscheid: RAM-Verlag.
[4] Majernik, J. (2019) The issue of the gating system design for permanent dies (Problematika návrhu vtokových soustav permanentních forem pro lití kovů pod tlakem). Stalowa Wola: Wydawnictwo Sztafeta Sp. z.o.o.
[5] ČSN 22 8601. C onstruction of compression casting moulds: Instructions (Formy tlakové licí: Zásady pro navrhování). Praha: Český normalizační institute, 1984. 32.
[6] El-Fotouh, M.R.A., Shash, A.Y. & Gadallah, M.H. (2018). Semi-automated gating system design with optimum gate and overflow positions for aluminum HPDC. In A. Öchsner & H. Altenbach (Eds.) Improved Performance of Materials (37-51). Cham, Switzerland:Springer Verlag. DOI: 10.1007/978-3-319-59590-0_4.
[7] Pinto, H.A., et al. (2019). Improvement and validation of Zamak die casting moulds. In 29th International Conference on Flexible Automation and Intelligent Manufacturing, 24-38 June 2019 (pp. 1547-1557). Limerick; Ireland: Elsevier B.V.. DOI: 10.1016/j.promfg.2020.01.131.
[8] Chavan, R. & Kulkarni, P.S. (2020). Die design and optimization of cooling channel position for cold chamber high pressure die casting machine. In 2nd International Conference on Emerging trends in Manufacturing, Engines and Modelling, 23-24 December 2019 (Article number 012017). Mumbai, India: Institute of Physics Publishing. DOI: 10.1088/1757-899X/810/1/012017.
[9] Dabhole, S.S., Kurundwad, C.A. & Prajapati, S.R. (2017). Design and development of die casting die for rejection reduction. International Journal of Mechanical Engineering and Technology. 8(5), 1061-1070.
[10] Altuncu, E., Doğan, A. & Ekmen, N. (2019). Performance evaluation of different air venting methods on high pressure aluminum die casting process. Acta Physica Polonica A. 135(4), 664-667. DOI: 10.12693/APhysPolA.135.664.
[11] Zhao, X. et al. (2018). Gating system optimization of high pressure die casting thin-wall AlSi10MnMg longitudinal loadbearing beam based on numerical simulation. China Foundry. 15(6), 436-442. DOI: 10.1007/s41230-018-8052-z.
[12] Qin, X.-Y., Su, Y., Chen, J. & Liu, L.-J. (2019). Finite element analysis for die casting parameters in high-pressure die casting process. China Foundry. 16(4), 272-276. DOI: 10.1007/s41230-019-8088-8.
[13] Cleary, P.W., Savage, G., Ha, J. & Prakash, M. (2014). Flow analysis and validation of numerical modelling for a thin walled high pressure die casting using SPH. C omputational Particle Mechanics. 1(3), 229-243. DOI: 10.1007/s40571-014-0025-4.
[14] Majernik, J. & Podaril, M. (2019). Influence of runner geometry on the gas entrapment in volume of pressure die cast. A rchives of Foundry Engineering. 19(4), 33-38. DOI: 10.24425/afe.2019.129626.
[15] Dańko, R., Dańko, J. & Stojek, J. (2015). Experiments on the Model Testing of the 2nd Phase of Die Casting Process Compared with the Results of Numerical Simulation. Archives of Foundry Engineering. 15(4), 21-24. DOI: 10.1515/afe-2015-0072.
[16] Gaspar, S. & Pasko, J. (2016). Pressing Speed, Specific Pressure and Mechanical Properties of Aluminium Cast. A rchives of Foundry Engineering. 16(2), 45-50. DOI: 10.1515/afe-2016-0024
Go to article

Authors and Affiliations

J. Majerník
1
ORCID: ORCID
M. Podařil
1
D. Gojdan
2

  1. Institute of Technology and Business in České Budějovice, Czech Republic
  2. Technical University of Košice, Faculty of Manufacturing Technologies with the Seat in Prešov, Slovak Republic
Download PDF Download RIS Download Bibtex

Abstract

Apple cultivars investigated as new hosts for two-spotted spider mite, Tetranychus urticae Koch appeared to provide good environment for its development and reproduction. The best conditions for two-spotted spider mite development were on leaves of cultivars Novamac and Freedom with a net reproduction (Ro) 22.6 and 20.3 respectively, while the worst on cultivars Pioner and Primula with Ro 8.9 and 10.2 ,respectively.

Go to article

Authors and Affiliations

Anna Skorupska
Download PDF Download RIS Download Bibtex

Abstract

B a c k g r o u n d: Echocardiography is the first exam to establish the myocardial function in patients with takotsubo syndrome (TTS). However, ECG-Gated Myocardial Single-Photon Emission Tomography (G-SPECT) also allows to calculate left ventricular ejection fraction (LVEF) and can be useful in early stadium of TTS.

A i m: To compare LVEF obtained from 99mTc-MIBI G-SPECT and echocardiography in patients with TTS.

M a t e r i a l a n d M e t h o d s: Study population: 20 patients in medium age 77 (62–89) with TTS were included. In all patients 99mTc-MIBI G-SPECT and echocardiography was performed on the same day.

R e s u l t s: LVEF measured by G-SPECT and echocardiography ranged from 34 to 83% and 38 to 69%, respectively. The LVEF values for ECHO were significantly lower than for SPECT. The correlation between the LVEF was r = 0.76. The calculated correlation coefficient (r) for linear regression analysis was 0.64. The following equation shows the approximate interdependence of both LVEF calculations: LVEF GSPECT = 10.35 + 0.93 * LVEF Echo.

C o n c l u s i o n s: G-SPECT tends to overerestimate LVEF compared to echocardiography so these imaging techniques should not be used interchangeably. Calculated equation should be used for comparison of LVEF.

Go to article

Authors and Affiliations

Małgorzata Kobylecka
Monika Budnik
Janusz Kochanowski
Jakub Kucharz
Tomasz Mazurek
Adam Bajera
Leszek Królicki
Grzegorz Opolski

This page uses 'cookies'. Learn more