Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 5
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Many paper-related products are in daily use all over the world. Although paper is one of the most recycled materials in the European Union, no end-of-waste criteria have been defi ned. Typical paper and cardboard should be recycled, but paper materials with impurities, such as cooking oil, sand, or plastic, are much more problematic. In particular, paper contaminated with cooking oil or butter (e.g., pizza boxes) is diffi cult waste. Also baking parchment paper cannot be stored as waste paper after use. Composting could be a solution, but in many municipal solid waste collection systems, this waste types are collected with the mixed waste stream, what fi nally leads this material to landfi lling or incinerating processes. Parchment paper and pizza box cardboard contain a lot of cellulose and in landfi lls are a source of CO2 and CH4. Incineration of these materials also leads to CO2 emission. The aim of this study was to investigate the degradation of cooking-oil-contaminated paper in media with a low inorganic nitrogen content. Cardboard usually used for packaging purposes was used as pre-test material. Two types of paper usually used in the kitchen were used: pizza box cardboard and parchment paper highly contaminated with cooking oil. Two types of low inorganic nitrogen media were tested: mature municipal waste compost (MSWC) and leaf mold (LM). The decrease of mass of both paper sample types was correlated with process time. Both tested sample types: dry cellulose materials and paper with cooking oil added, were partly or completely decomposed after 6 weeks of bioprocessing in aerobic conditions without an additional dose of inorganic nitrogen. According to waste separation rules, wet paper or paper contaminated with cooking oil have to be stored with other wastes which are „not possible for further use”. This work show possibility to change these rules.
Go to article

Bibliography

  1. Agarwal, G., Liu, G. & Lattimer, G. (2014) Pyrolysis and Oxidation of Cardboard. Fire safety science-proceedings of the eleventh international symposium. pp. 124–137. DOI:10.3801/IAFSS. FSS.11-124
  2. Ahmed, S., Hall, A.M. & Ahmed, S.F. (2018) Biodegradation of Different Types of Paper in a Compost Environment. Proceedings of the 5th International Conference on Natural Sciences and Technology (ICNST’18) March 30–31, Asian University for Women, Chittagong, Bangladesh.
  3. Al-Mutairi, N. (2009) Co-composting of manure with fat, oil, and grease: Microbial fingerprinting and phytotoxicity evaluation. Can. J. Civ. Eng. 36(2) pp. 209–218. DOI:10.1139/L08-117
  4. Aluyor, E.O., Obahiagbon, K.O. & Ori-jesu, M. (2009) Biodegradation of vegetable oils: A review. Scientific Research and Essay, 4(6), pp. 543–54.
  5. Andlar, M., Rezic, T., Mardetko, M., Kracher, D., Ludwig, R. & Santek B. (2018) Lignocellulose degradation: An overview of fungi and fungal enzymes involved in lignocellulose degradation. Engineering in Life Sciences, 18 pp. 768–778. DOI:10.1002/ elsc.201800039
  6. Balada, I., Altmann, V. & Šařec, P. (2016) Material waste paper recycling for the production of substrates and briquettes. Agronomy Research 14(3), pp. 661–671.
  7. Bekiroğlu, S., Elmas, G.M. & Yagshiyev, Y. (2017) Contribution to Sustainability and the National Economy Through Recycling Waste Paper from Istanbul’s Hotels in Turkey. BioResources, 12(4), pp. 6924–6955. DOI:10.15376/biores.12.4.6924-6955
  8. Bogaard, J. & Whitmore, P.M. (2002) Explorations of the role of humidity fluctuations in the deterioration of paper. Studies in Conservation, 47(3), pp. 11–15. DOI:10.1179/sic.2002.47.s3.003
  9. Borrego, S., Gómez de Saravia, S., Valdés, O., Vivar, I., Battistoni, P. & Guiamet, P. (2016) Biocidal activity of two essential oils on fungi that cause degradation of paper documents. International Journal of Conservation Science, 7(2), pp. 369–380.
  10. Cichosz, G. & Czeczot, H. (2011) Oxidative stability of edible fats – consequences to human health. Bromat. Chem. Toksykol. XLIV, 1, pp. 50–60
  11. Ciesielczuk, T., Poluszyńska, J., Rosik-Dulewska, Cz., Sporek, M. & Lenkiewicz, M. (2016). Uses of weeds as an economical alternative to processed wood biomass and fossil fuels. Ecological engineering, 95, pp. 485–491. DOI:10.1016/j.ecoleng.2016.06.100
  12. Cuvelier, M.E., Soto, P., Courtois, F., Broyart, B. & Bonazzi, C. (2017) Oxygen solubility measured in aqueous or oily media by a method using a non-invasive sensor. Food Control, 73, part 3, pp. 1466–1473. DOI:10.1016/j.foodcont.2016.11.008
  13. Franica, M., Grzeja, K. & Paszula, S. (2018) Evaluation of quality parameters of selected composts. Archives of Waste Management and Environmental Protection, 20(1), pp. 21–32.
  14. Ghehsareh, M.G., Khosh-Khui, M. & Nazari, F. (2011) Comparison of Municipal Solid Waste Compost, Vermicompost and Leaf Mold on Growth and Development of Cineraria (Pericallis × hybrida ‘Star Wars’). Journal of Applied Biological Sciences, 5 (3), 55–58.
  15. Gumienna, M., & Czarnecki, Z. (2010). The surface-active compounds of microbiological origin. Nauka Przyr. Technol., 4, 4, #51. (in Polish)
  16. Kaakinen, J., Vahaoja, P., Kuokkanen, T. & Roppola, K. (2007) Studies on the Effects of Certain Soil Properties on the Biodegradation of Oils Determined by the Manometric Respirometric Method. J. Automated Methods and Management in Chemistry, 034601. DOI:10.1155/2007/34601
  17. Karahan, S. (2020) Investigation of Recycling Possibilities of Stacked Waste Office Paper for at Least Five Years. GUSTIJ, 10(2) pp. 366 – 373. DOI:10.17714/gumusfenbil.606061
  18. Li, Z., Wrenn, B.A. & Venosa, A.D. (2005) Anaerobic biodegradation of vegetable oil and its metabolic intermediates in oil-enriched freshwater sediments. Biodegradation 16, pp. 341–352. DOI:10.1007/s10532-004-2057-6
  19. Micales, J.A., & Skog, K.E. (1997) The Decomposition of Forest Products in Landfills. International Biodeterioration & Biodegradation, 39, 2–3, pp. 145–158.
  20. Nowińska, A., Baranowska, J. & Malinowski, M. (2019) The analysis of biodegradation process of selected paper packaging waste. Infrastructure And Ecology Of Rural Areas 3, pp. 253–261. DOI:10.14597/INFRAECO.2019.3.1.018
  21. Osono, T. (2019) Functional diversity of ligninolytic fungi associated with leaf litter decomposition. Ecological Research, 35, pp.30–43. DOI:10.1111/1440-1703.12063
  22. Ozimek, A. & Kopeć, M. (2012). Assessment of biological activity of biomass at different stages of composting process with use of the oxitop control measurement system. Acta Agrophysica, 19(2), 379–390.
  23. Perez, J., Munoz-Dorado, J., Rubia, T. & d.l. Martınez, J. (2002) Biodegradation and biological treatments of cellulose, hemicellulose and lignin: An overview. International Microbiology, 5 (2), pp. 53–63. DOI:10.1007/s10123-002- 0062-3
  24. Poluszyńska, J., Ciesielczuk, T., Biernacki, M. & Paciorkowski M. (2021) The effect of temperature on the biodegradation of different types of packaging materials under test conditions. Archives of Environmental Protection, 47(4), pp. 74–83. DOI:10.24425/aep.2021.139503
  25. Rajae, A., Ghita, A.B., Souabi, S., Winterton, P., Cegarra, J. & Hafidi M. (2008) Aerobic biodegradation of sludge from the effluent of a vegetable oil processing plant mixed with household waste: Physical–chemical, microbiological, and spectroscopic analysis. Bioresource technology, 99(18), pp. 8571–8577. DOI:10.1016/j. biortech.2008.04.007
  26. Saletes, S., Siregar, F.A., Caliman, J.P. & Liwang, T. (2004) Ligno- Cellulose Composting: Case Study on Monitoring Oil Palm Residuals. Compost Science & Utilization, 12(4), pp. 372–382. DOI:10.1080/1065657X.2004.10702207
  27. Salihu, I., Mohd, Y.S., Nur, A.Y. & Siti, A.A. (2018) Microbial degradation of vegetable oils: a review, 3, pp. 45–55.
  28. Smirnova. I.E. & Saubenova, M.G. (2001) Use of Cellulose- -Degrading Nitrogen-Fixing Bacteria in the Enrichment of Roughage with Protein. Applied Biochemistry and Microbiology, 37(1), pp. 76–79.
  29. Wan Razali, W.A., Baharuddin, A.S., Talib, A.T., Sulaiman, A., Naim, M.N., Hassan, M.A. & Shirai, Y. (2012) Degradation of oil palm empty fruit bunches (OPEFB) fibre during composting process using in-vessel composter. Bioresources, 7(4), pp. 4786–4805.
  30. Wołczyński, M. & Janosz-Rajczyk, M. (2014) Influence of Initial Alkalinity of Lignocellulosic Waste on Their Enzymatic Degradation. Archives of Environmental Protection, 40(2), pp. 103–113. DOI:10.2478/aep-2014-0019
Go to article

Authors and Affiliations

Tomasz Ciesielczuk
1
ORCID: ORCID
Czesława Rosik-Dulewska
2
ORCID: ORCID

  1. Opole University, Poland
  2. Institute of Environmental Engineering, Polish Academy of Sciences, Zabrze, Poland
Download PDF Download RIS Download Bibtex

Abstract

Commercialization processes are modeled and analyzed from the point of view of the implementation of activities under particular stages. These issues are the subject of many studies and analyzes, which is why the extensive literature is available on this subject. Technology valuation at various stages of the commercialization process is a separate issue. Such valuation is prepared in most cases by consulting companies for determining the price in the buying and selling processes. These valuations use known methods also used in other cases, e.g., real estate valuation. The work carried out presents the author’s concept of the commercialization process model, taking into account the costs and value of the technology at various stages of the product life cycle. The model uses a stochastic approach to determine future revenues and costs, which allows estimating the value of the technology by or in determining the probability of assessment validity. The proposed stochastic approach greatly increases the chances of using the presented solutions in practical activities related to technology valuation for the purposes of purchase and sale transactions.
Go to article

Authors and Affiliations

Bozena Kaczmarska
1
Wacław Gierulski
1
ORCID: ORCID
Josef Zajac
2
Anton Bittner
2
Wacław Gierulski
1

  1. Kielce University of Technology, Poland
  2. Technical University of Kosice, Slovakia
Download PDF Download RIS Download Bibtex

Abstract

There are only very few studies on the anatomy of the deep brachial artery — DBA (arteria profunda brachii), both regarding its course, branching pattern and contribution to the cubital rete. Most of the textbooks are based on data which remain unchanged for years. The aim of this article was to summarize the current knowledge on this vessel, based on the anatomical and clinical studies and other sources available including also own cadaveric study. We tried to present also some controversies regarded to the nomenclature of the branches of the DBA.
Go to article

Bibliography

1. Standring S.: Gray’s Anatomy. The Anatomical Basis of Clinical Practice. Churchill Livingstone Elsevier 2008. ISBN 978-0-8089-2371-8.
2. Spodnik J.H.: Polsko angielsko łacińskie mianownictwo anatomiczne. Edra, Urban & Partner, Wrocław 2017. ISBN 978-83-65625-53-3.
3. Aleksandrowicz R., Gołąb B., Narkiewicz O.: Mianownictwo anatomiczne — wydanie V. PZWL Warszawa 1989. ISBN 83-200-1311-9.
4. Kahn C.I., MacNeil M., Fanola C.L., Whitney E.R.: Complex arterial patterning in an anatomical donor. Translational Research in Anatomy. 2018 Sept; 12: 11–19; https://doi.org/10.1016/j.tria.2018.06.001
5. Żytkowski A., Tubbs R.S., Iwanaga J., Clarke E., Polguj M., Wysiadecki G.: Anatomical normality and variability: Historical perspective and methodological consideration. Translational Research in Anatomy. 2021 Jun; 23: 100105. https://doi.org/10.1016/j.tria.2020.100105
6. Tubbs R.S., Parmar A., Noordeh N., Rogers C., Rogers N., Loukas M., Shoja M.M., Cohen Gadol A.A.: Surgical anatomy of the radial nerve and profunda brachii artery within the triangular interval. Ital J Anat Embryol. 2008 Jul–Sep; 113 (3): 129–134. PMID: 19205584.
7. Menck J., Döbler A., Döhler J.R.: Vascularization of the humerus. Langenbecks Arch Chir. 1997; 382 (3): 123–127. PMID: 9324609.
8. Casoli V., Kostopoulos E., Pélissier P., Caix P., Martin D., Baudet J.: The middle collateral artery: anatomic basis for the “extreme” lateral arm flap. Surg Radiol Anat. 2004 Jun; 26 (3): 172–177. https://doi.org/10.1007/s00276-003-0206-y. Epub 2004 Jan 17. PMID: 14730394.
9. Katsaros J., Schusterman M., Beppu M., Banis J.C. Jr, Acland R.D.: The lateral upper arm flap: anatomy and clinical applications. Ann Plast Surg. 1984 Jun; 12 (6): 489–500. https://doi.org/10.1097/00000637-198406000-00001. PMID: 6465806.
10. Hammer H., Bugyi I.: Free transfer of a lateral upper arm flap. Handchir Mikrochir Plast Chir. 1988 Jan; 20 (1): 20–26. PMID: 2895050.
11. Wenig B.L.: The lateral arm free flap for head and neck reconstruction. Otolaryngol Head Neck Surg. 1993 Jul; 109 (1): 116–119. https://doi.org/10.1177/019459989310900121. PMID: 8336957.
12. Lim A.Y., Pereira B.P., Kumar V.P.: The long head of the triceps brachii as a free functioning muscle transfer. Plast Reconstr Surg. 2001 Jun; 107 (7): 1746–1752. https://doi.org/10.1097/00006534-200106000-00016. PMID: 11391194.
13. Piquilloud G., Villani F., Casoli V.: The medial head of the triceps brachii. Anatomy and blood supply of a new muscular free flap: the medial triceps free flap. Surg Radiol Anat. 2011 Jul; 33 (5): 415–420. https://doi.org/10.1007/s00276-010-0739-9. Epub 2010 Oct 26. PMID: 20976453.
14. Naveen K., Jyothsna P., Nayak S.B., Mohandas R.K., Swamy R.S., Deepthinath R., Shetty S.D.: Variant origin of an arterial trunk from axillary artery continuing as profunda brachii artery—a unique arterial variation in the axilla and its clinical implications. Ethiop J Health Sci. 2014 Jan; 24 (1): 93–96. https://doi.org/10.4314/ejhs.v24i1.13. PMID: 24591805.
15. Aastha, Jain A., Kumar M.S.: An unusual variation of axillary artery: a case report. J Clin Diagn Res. 2015 Jan; 9 (1): AD05–7. https://doi.org/10.7860/JCDR/2015/11680.5477. Epub 2015 Jan 1. PMID: 25737968.
16. Celik H.H., Aldur M.M., Tunali S., Ozdemir M.B., Aktekin M.: Multiple variations of the deep artery of arm: double deep artery of arm and deep artery of arm with the superior ulnar collateral artery. A case report. Morphologie. 2004 Dec; 88 (283): 188–190. https://doi.org/10.1016/s1286-0115(04)98147-7. PMID: 15693422.
17. Vitale N., Lucarelli K., Di Bari N., Milano A.D.: Anomalous origin of a grafted left internal mammary artery from the deep brachial artery. Eur Heart J. 2021 Mar 21; 42 (12): 1182. https://doi.org/10.1093/eurheartj/ehab015
18. Iwanaga J., Singh V., Ohtsuka A., et al.: Acknowledging the use of human cadaveric tissues in research papers: Recommendations from anatomical journal editors. Clinical Anat. 2021; 2–4. https://doi.org/10.1002/ca.23671
19. Walocha J.A., Szczepański W., Miodoński A.J., Gorczyca J., Skrzat J., Bereza T., Ceranowicz P., Lorkowski J., Stachura J.: Application of acrylic emulsion Liquitex R (Binney and Smith) for the preparation of injection specimens and immunohistochemical studies — an observation. Folia Morphol. 2003; 62 (2): 157–161.
20. Crocco J.A.: The Classic Collector’s Edition Gray’s Anatomy. Bounty Books, New York 1977. ISBN 0-517-223651.
21. Panagouli E., Tsaraklis A., Gazouli I., Anagnostopoulou S., Venieratos D.: A rare variation of the axillary artery combined contralaterally with an unusual high origin of a superficial ulnar artery: description, review of the literature and embryological analysis. Ital J Anat Embryol. 2009 Oct–Dec; 114 (4): 145–156. PMID: 20578671.
22. Clarke E., Mazurek A., Radek M., Żytkowski A., Twardokęs W., Polguj M., Wysiadecki G.: Superficial brachial artery — A case report with commentaries on the classification. Trans Res in Anat. 2021; 23: 100112. https://doi.org/10.1016/j.tria.2021.100112
23. Yücel A.H.: Unilateral variation of the arterial pattern of the human upper extremity with a muscle variation of the hand. Acta Med Okayama. 1999 Apr; 53 (2): 61–65. https://doi.org/10.18926/AMO/31629. PMID: 10358720
24. Cavdar S., Zeybek A., Bayramiçli M.: Rare variation of the axillary artery. Clin Anat 2000; 13 (1): 66–68. https://doi.org/10.1002/(SICI)1098-2353(2000)13:166::AID-CA8>3.0.CO;2-M.
25. Dalin L., Jingqiang Y., Kun Z., Yunhui C.: Surgical treatment of deep brachial artery aneurysm. Ann Vasc Surg. 2011 Oct; 25 (7): 983.e13–6. https://doi.org/10.1016/j.avsg.2011.05.006.
26. Griffin L., Garland S.J., Ivanova T., Hughson R.L.: Blood flow in the triceps brachii muscle in humans during sustained submaximal isometric contractions. Eur J Appl Physiol. 2001 May; 84 (5): 432–437. https://doi.org/10.1007/s004210100397. PMID: 11417431
27. de Paula R.C., Erthal R., Fernandes R.M.P., Babinski M.A., Silva J.G., Chagas C.A.A.: Alomalous origin of the deep brachial artery (profunda brachii) observed in bilateral arms: case report. J Vasc Bras. 2013; 12 (1): 53–56.
28. Osiak K., Elnazir P., Mazurek A., Pasternak A.: Prevalence of the persistent median artery in patients undergoing surgical open carpal tunnel release: A case series. Trans Res in Anat; 2021; 23: 100113. https://doi.org/10.1016/j.tria.2021.100113
29. Rodriguez-Niedenführ M., Burton G.J., Deu J., Sañudo J.R.: Development of the arterial pattern in the upper limb of staged human embryos: normal development and anatomic variations. J Anat 2001; 199 (4): 407–417. PMID: 11693301.
30. Dubreuil-Chambardel L.: Variations des Arteres du Membre Superieur. Paris: Masson et Cie, 1926.
Go to article

Authors and Affiliations

Wojciech Przybycień
1
Michał Zarzecki
1
Agata Musiał
1
Paweł Depukat
1
Bartłomiej Kruszyna
1
Agata Mazurek
1
Julia Jaszczyńska
1
Kinga Glądys
1
Ewa Walocha
2
Ewa Mizia
1
Grzegorz Wysiadecki
3
Jerzy Walocha
1

  1. Department of Anatomy, Jagiellonian University Medical College, Kraków, Poland
  2. Department of Clinical Nursing, Institute of Nursing and Obstetrics, Jagiellonian University Medical College, Kraków, Poland
  3. Department of Normal and Clinical Anatomy, Chair of Anatomy and Histology, Medical University of Łódź, Łódź, Poland
Download PDF Download RIS Download Bibtex

Abstract

This paper investigates the possibility of exciting high quality trapped resonant modes on frequency selective surfaces consisting of identical sub-wavelength metallic inclusions (symmetrically split rings) with no structural asymmetry but exhibitting electrical asymmetry. The electrical symmetry is broken by using different dielectric substrates. The existence of such anti-symmetric trapped mode on geometrical symmetric structure is demonstrated through numerical simulation. Numerical results suggest that the high quality factor observed for these resonant modes is achieved via weak coupling between the "trapped modes" and free space which enables the excitation of these modes.
Go to article

Authors and Affiliations

Mihai Rotaru
Jan Sykulski
Download PDF Download RIS Download Bibtex

Abstract

In this paper, we propose a new algorithm that improves the performance of the operation of Handover (HO) in LTE-Advanced (LTE-A) networks. As recognized, Mobility Management (MM) is an important pillar in LTE/LTE-A systems to provide high quality of service to users on the move. The handover algorithms define the method and the steps to follow to ensure a reliable transfer of the UEs from one cell to another without interruption or degradation of the services offered by the network. In this paper, the authors proposed a new handover algorithm for LTE/LTE-A networks based on the measurement and calculation of two important parameters, namely the available bandwidth and the Received Power (RSRP) at the level of eNodeBs. The proposed scheme named LTE Available Bandwidth and RSRP Based Handover Algorithm (LABRBHA) was tested in comparison with well-known algorithms in the literature as the LHHA, LHHAARC and the INTEGRATOR scheme using the open source simulator LTE-Sim. Finally, the network performances were investigated via three indicators: the number of lost packets during the handover operation, the latency as well as the maximum system throughput. The results reported that our algorithm shows remarkable improvements over other transfer schemes.

Go to article

Authors and Affiliations

Ismail Angri
Abdellah Najid
Mohammed Mahfoudi

This page uses 'cookies'. Learn more