Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The paper presents an analysis of BSS coloring scheme defined in IEEE 802.11ax standard. The efficiency of dense networks for different scenarios was analyzed and compared. This analysis covers various topologies and work configurations through the use of multiple parameters of the PHY and MAC layers. A positive impact of the coloring mechanism on the QoS was observed. The study also analyzed the impact of the RTS/CTS mechanism on the obtained network performance and adequate prioritization of various traffic classes. It was shown that the proper selection of the coloring mechanism parameters in the IEEE 802.11ax standard has a strong impact on QoS and the performance of dense networks.
Go to article

Authors and Affiliations

Marek Natkaniec
1
Natalia Bieryt
1

  1. Faculty of Computer Science, Electronics and Telecommunications, Institute of Telecommunications, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków
Download PDF Download RIS Download Bibtex

Abstract

Flap peening (FP) is a cold working technique used to apply a compressive force using small shots, this will lead to enhance the surface properties that it can sustain for long life during working conditions. In this study, several aircraft aluminum alloys materials namely; 2219 T6, 2024 T6, 7075T6, and 6061 T6 were flap peened under different rotational speeds. The effect of rotational speed on the average surface roughness (Ra) and average surface micro hardness have been investigated. As seen by the Scanning Electron Microscope SEM phots that the hardness of peened layer is increased. It was found that as the flap peening speeds increase the percent change in surface roughness (Ra) increases, and the percent change in surface micro hardness decreases. The maximum increase in Ra occurs in 2219 T80 and the minimum in 6061 T6 alloys, and for hardness, it is reported that the maximum occurs in 6061 T6 and the minimum in 2019 T80 alloy.
Go to article

Authors and Affiliations

Nabeel Abu Shaban
1
ORCID: ORCID
Nabeel Alshabatat
2
Safwan Al-Qawabah
1
ORCID: ORCID

  1. Al-Zaytoonah University of Jordan, Mechanical Engineering Department, Amman, Jordan
  2. Tafila Technical University, Mechanical Engineering Department, Tafila 66110, Jordan

This page uses 'cookies'. Learn more