Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 7
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Plates of AZ91 cast magnesium alloy with a thickness of 3.5 mm were butt-welded using a laser power of 2000 W and helium as the shielding gas. The effect of the welding speed on the weld cross-sectional geometry and porosity was determined by microscopic analysis. It was found that to avoid the formation of macropores, welding should be carried out at a speed of 3.4 m/min or higher. Non-equilibrium solidification of the laser-melted metal causes fragmentation of the weld microstructure. Joints that were welded at optimal laser processing parameters were subjected to structural observations using optical and scanning microscopy and to mechanical tests. The mechanical properties were determined through Vickers hardness measurements in the joint cross-section and through tensile testing. The results indicate that the hardness in the fusion zone was about 20 HV (30%) higher than that of the base material. The weld proved to be a mechanically stable part of the joint; all the tensile-tested specimens fractured outside the fusion zone.

Go to article

Authors and Affiliations

A. Dziadoń
ORCID: ORCID
E. Musiał
Download PDF Download RIS Download Bibtex

Abstract

With increasing technology development, an increasing emphasis is placed on the precision of products, but cannot be guaranteed without a stable production process. To ensure the stability of the production process, it is necessary to monitor it in detail, find its critical locations and eliminate or at least control it. With such a precise manufacturing method as investment casting, such a process is a must. This paper therefore deals with monitoring the production process of wax models of large turbine blades using infrared thermography. The aim was to evaluate the critical locations of this production and to propose recommendations for their elimination or, at the very least, significant mitigation of their impact on the final quality of the large turbine blade casting.

Go to article

Authors and Affiliations

A. Herman
O. Vrátný
I. Kubelková
Download PDF Download RIS Download Bibtex

Abstract

The goal of this article is non-destructive ultrasonic testing of internal castings defects. Our task was to cast several samples with defects like porosity and cavities (where belongs mostly shrinkages) and then pass these samples under ultrasonic testing. The characteristics of ultrasonic control of castings are presented in the theoretical part of this article. Ultrasonic control is a volume non-destructive method that can detect internal defects in controlled materials without damaging the construction. It is one of the most widely used methods of volume non-destructive testing. For experimental control were made several cylindrical samples from ferritic grey and ductile cast iron. Because of the form and dispersion of graphite of grey cast iron it was not possible to make ultrasonic records on this casting with probe we used, so we worked only with ductile cast iron. Ultrasonic records of casting control are shown and described in the experimental part. The evaluation of the measurement results and the reliability of the ultrasonic method in castings control is listed at the end of this article.

Go to article

Authors and Affiliations

M. Boháčik
M. Mičian
R. Koňár
L. Trško
J. Winczek

Authors and Affiliations

Zuzanna Topolińska
ORCID: ORCID

This page uses 'cookies'. Learn more