Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 4
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The article discusses the process of copper production in a slurry furnace and in a converter, with the indication of corrosion effects of the extractor. The furnace shaft and settling furnace of the flash furnace were analyzed. The basic factors determining the choice of singlestage technology of copper smelting in relation to the exploitation of refractory materials were indicated. The effects of dissolving the furnace lining material through slag have been presented. Structural analysis results using a scanning microscope are also included. The kinetics of destruction of ceramic materials under the influence of copper slag were evaluated. It has been shown that detailed analyzes are necessary in order to extend the time of furnace extensibility of furnaces in copper processes. The surface layer of the crucible softens due to saturation with slag reagents and is then washed out and moves in the solid form to the slag. The research in the article indicate not only the possibility of dissolution of the ceramic material in the molten slag, but also possibility of erosive activity of the slag on that material.
Go to article

Authors and Affiliations

M. Wędrychowicz
B. Basiura
A.W. Bydałek
Download PDF Download RIS Download Bibtex

Abstract

Identification and ecological diagnostics of the influence of basic load parameters (the cumulative effect of air temperature, the amount of precipitation) is a fundamental aspect of the wastewater sludge treatment at drying beds. The positive dynamics of atmospheric precipitation and the long-term functioning of natural and technical systems for wastewater sludge treatment under the influence of excessive atmospheric moisture does not allow the treatment/drying of precipitation, which provokes soil pollution with subsequent diffusion of pollutants into groundwater, which leads to the degradation of the natural environment components interacting with drying beds. The article is devoted to the adaptation of the process of treatment/drying of wastewater sludge at drying beds. The method includes identification of the dynamics of climatic factors of a long-term chronological series, which makes it possible to predict the effect of atmospheric precipitation on the wastewater sludge drying. The costs for the implementation and subsequent use of the proposed method are absent or insignificant (in the conditions of an increase in usable area during the modernisation of existing drying beds) in comparison with the costs of well-known and widespread methods of deliquefaction.
Go to article

Bibliography

ALBERTSON O., BURRIS B., REED S., SEMON J., SMITH J. JR., WALLACE A. 1987. Design manual: dewatering municipal wastewater sludges [online]. EPA/625/1-87/014 (NTIS PB95186417). [Access 15.10.2021]. Available at: https://cfpub.epa.gov/si/si_public_re-cord_Report.cfm?Lab=NRMRL&dirEntryID=46573
CASAJUS N., PÉRIÉ C., LOGAN T., LAMBERT M.C., DE BLOIS S., BERTEAUX D. 2016. An objective approach to select climate scenarios when projecting species distribution under climate change. PLoS One. Vol. 11(3). DOI 10.1371/journal.pone.0152495e0152495.
DAMERT M., BAUMGARTNER R.J. 2017. Intra-sectoral differences in climate change strategies: evidence from the global automotive industry. Business Strategy and Environment. Vol. 27(3) p. 265– 281. DOI 10.1002/bse.1968.
DREGULO A.M. 2019. Identifikatsiya i prognozirovaniye klimaticheskoy nagruzki dlya proyektirovaniya i ekspluatatsii ilovykh kart (ploshchadok) [Identification and prediction of climatic loads for design and operation of drying beds]. Voda i ekologiya: problemy i resheniya. No. 1(77) p. 35–43. DOI 10.23968/2305-3488.2019.24.1.35-43.
DREGULO A.M. 2020. Vliyaniye klimaticheskikh faktorov na eksplua-tatsiyu prirodno-tekhnicheskikh sistem obrabotki otkhodov vodootvedeniya [Influence of climatic factors on the operation of natural and technical systems for waste treatment of waste-water disposal]. Vestnik Moskovskogo Unviersiteta. Seriya Geografiya. No. 6 p. 32–40.
DREGULO A.M., BOBYLEV N.G. 2021a. Integrated assessment of ground-water pollution from the landfill of sewage sludge. Journal of Ecological Engineering. Vol. 22(1) p. 68–75. DOI 10.12911/22998993/128872.
DREGULO A., BOBYLEV N. 2021b. Heavy metals and arsenic soil contamination resulting from wastewater sludge urban landfill disposal. Polish Journal of Environmental Studies. Vol. 30(1) p. 81–89. DOI 10.15244/pjoes/121989.
DREGULO A.M., RODIONOV V.Z. 2020. «Goryachiye tochki» KHELKOM: zhivotnovodcheskiy kompleks «Pashskiy» kak ob”yekt nakoplen-nogo vreda okruzhayushchey srede [HELCOM “hot spots”: cattle-breeding complex “Pashskiy” as the object of accumulated environmental damage]. Theoretical and Applied Ecology. No. 4 p. 49–54. DOI 10.25750/1995-4301-2020-4-049-054.
DREGULO A.M., VITKOVSKAYA R.F. 2018. Microbiological evaluation of soils of sites with accumulated ecological damage (sewage dumps). Fiber Chemistry. Vol. 50(3) p. 243–247. DOI 10.1007/s10692-018-9969-0.
DREGULO A.M., VITKOVSKAYA R.F. 2020. Analysis of foreign and domestic practice of operating sludge platforms to minimize negative environmental impact. IOP Conference Series: Earth and Environmental Science. Vol. 613, 012026. DOI 10.1088/1755-1315/613/1/012026.
DROZDOV O.A. 1954. O svoystvakh integral’no-raznostnykh krivykh [On the properties of integral-difference curves]. Trudy Gosu-darstvennoy geofizicheskoy observatorii. Vyp. 162. Leningrad p. 3–6.
EL-GENDY A.S., EL-KASSAS H.I., RAZEK T.M.A., ABDEL-LATIF H. 2017. Phyto-dewatering of sewage sludge using Panicum repens L. Water Science and Technology. Vol. 75(7) p. 1667–1674. DOI 10.2166/wst.2017.039.
EVILEVICH A.Z. 1957. K raschetu ilovykh ploshchadok [To the calculation of sludge-drying beds]. Vodosnabzheniye i sanitar-naya tekhnika. No. 10 p. 30–32.
HAANDEN A., LUBBE J. 2007. Biological waste water treatment – Design and optimisation of activated sludge system. Leidschendam. Quist Publishing. ISBN 9781780407753 pp. 360.
JAWECKI B., PAWĘSKA K., SOBOTA M. 2017. Operating household wastewater treatment plants in the light of binding quality standards for wastewater discharged to water bodies or to soil. Journal of Water and Land Development. No. 32 (I–III) p. 31–39. DOI 10.1515/jwld-2017-0004.
KATTSOV V.M. (ed.) 2017. Doklad o klimaticheskikh riskakh na territorii Rossiyskoy Federatsii [Report on climate risks in the Russian Federation]. Saint-Petersburg. Glavnaya geofizicheskaya observatoriya im. A. I. Voyeykova. ISBN 978-9500833-1-5 pp. 105.
NIELSEN S., STEFANAKIS A.I. 2020. Sustainable dewatering of industrial sludges in sludge treatment reed beds: Experiences from pilot and full-scale studies under different climates. Applied Sciences. Vol. 10(21), 7446. DOI 10.3390/app10217446.
PANDEY M.K., JENSSEN P.D. 2015. Reed beds for sludge dewatering and stabilization. Journal of Environmental Protection. Vol. 06(04) p. 341–350. DOI 10.4236/jep.2015.64034.
Rosgidromet 2016. Doklad ob osobennostyakh klimata na territorii Rossiyskoy Federatsii za 2018 god [A report on climate features on the territory of The Russian Federation in 2018]. Moskva. Federal’naya sluzhba po gidrometeorologii i monitoringu okru-zhayushchey sredy. ISBN 978-5-906099-58-7 pp. 70 [online]. [Access 10.10.2020]. Available at: http://www.meteorf.ru/upload/pdf_download/%D0%94%D0%BE%D0%BA%D0%BB%D0%B0% D0%B42016.pdf
Rosgidromet 2019. Doklad ob osobennostyakh klimata na territorii Rossiyskoy Federatsii za 2018 god [A report on climate features on the territory of The Russian Federation in 2018]. Moskva. Federal’naya sluzhba po gidrometeorologii i monitoringu okru-zhayushchey sredy. ISBN 978-5-906099-58-7 pp. 79.
ROSER-RENOUF C., MAIBACH E.W., LI J. 2016. Adapting to the changing climate: An assessment of local health department preparations for climate change-related health threats 2008–2012. PloS ONE. Vol. 11(3). DOI 10.1371/journal.pone.0151558.
SP 32.13330.2012. Kanalizatsiya. Naruzhnyye seti i sooruzheniya. Aktualizirovannaya redaktsiya SNiP 2.04.03-85 [Sewerage. Out-door networks and structures. Updated version of SNiP 2.04.03- 85] [online]. [Access 10.10.2020]. Available at: http://docs.cntd.ru/document/1200094155
VORONOV Y.V., YAKOVLEV S.V. 2006. Vodootvedeniye i ochistka stochnykh vod. Uchebnoye izdaniye [Water disposal and waste-water treatment. Textbook for universities]. Moskva. Izdatel’stvo ASV. ISBN 5-93093-119-4 pp. 677.
ZOLINA O.G., BULYGINA O.N. 2016. Sovremennaya klimaticheskaya izmenchivost’ kharakteristik ekstremal’nykh osadkov v Rossii [Current climatic variability of extreme precipitation in Russia]. Fundamental’naya i prikladnaya klimatologiya. No. 1 p. 84–103. DOI 10.21513/2410-8758-2016-1-84-103.
Go to article

Authors and Affiliations

Andrei Mikhailovich Dregulo
1 2
ORCID: ORCID

  1. National Research University “Higher School of Economics”, Pechatnikov str. 16, 198099 Saint-Petersburg, Russia
  2. Saint-Petersburg Federal Research Center of the Russian Academy of Sciences (SPC RAS), Scientific Research Centre for Ecological Safety of the Russian Academy of Sciences, Korpusnaya str. 18, 197110, Saint-Petersburg, Russia
Download PDF Download RIS Download Bibtex

Abstract

This paper presents a study of the hybrid electro-discharge mechanical machining BEDMM (Brush Electro-Discharge Mechanical Machining) with the application of a rotary disk brush as a working electrode. The discussed method enables not only an effective machining with a material removal rate of up to 300 mm3/min but also finishing (with the obtained roughness of Ra < 0.5 μm) of the surfaces of complex-shaped alloys with poor machinability. The analysis of the factors involved in the machining process indicates that its efficiency is determined by electrodischarge. The use of flexible working electrodes makes it possible to apply simple technological instrumentation and results in the simplicity of the process automation. The aim of the study was to obtain quantitative relationships between the parameters of brush electro discharge mechanical machining (BEDMM) and its effects. The presented experimental research results define the effect of the process input parameters on the performance and roughness of machined surfaces obtained for manganese cast steel.

Go to article

Authors and Affiliations

P.S. Młynarczyk
S. Spadło
Download PDF Download RIS Download Bibtex

Abstract

The article focused primarily on comparing the achieved mechanical results for AlSi7Mg0.3Cu0.5Zr and AlSi7Mg0.3Cu0.5Zr0.15Ti experimental alloys. Experimental variants with the addition of Zr ≥ 0.05 wt. % demonstrated the ability of Zr to precipitate in the form of Al3Zr or AlSiZr intermetallic phases. Zr precipitated in the form of long smooth needles with split ends. When evaluating the thermal analyses, the repeated peak was observed already with the initial addition of Zr in the range of approximately 630 °C. It was interesting to observe the increased interaction with other intermetallic phases. EDX analysis confirmed that the individual phases are based on Cu, Mg but also Fe. Similar phenomena were observed in experimental alloys with a constant addition of Zr and a gradual increase in Ti by 0.1 wt. %. A significant change occurred in the amount of precipitated Zr phases. A more significant increase in mechanical properties after heat treatment of AlSi7Mg0.3Cu0.5Zr experimental alloys was observed mainly above the Zr content ≥ 0.15 wt. % Zr. The improvement of yield and tensile strength over the AlSi7Mg0.3Cu0.5 reference alloy after heat treatment was minimal, not exceeding 1 %. A more significant improvement after heat treatment occurred in modulus of elongation with an increase by 6 %, and in hardness with an increase by 7 %. The most significant drop occurred in ductility where a decrease by 31 % was observed compared to the reference alloy. AlSi7Mg0.3Cu0.5Zr0.15Ti experimental alloys, characterized by varying Ti content, achieved a more significant improvement. The improvement in tensile strength over the AlSi7Mg0.3Cu0.5 reference alloy after heat treatment was minimal, not exceeding 1 %. A more significant improvement after heat treatment occurred in modulus of elongation with an increase by 12 %, in hardness with an increase by 12 % and the most significant improvement occurred in yield strengthwith a value of 18 %. The most significant decrease also occurred in ductility where, compared to the reference alloy, the ductility drop was by up to 67 %.
Go to article

Bibliography

[1] Vončina, M., Medved, J., Kores, S., Xie, P., Cziegler, A. & Schumacher, P. (2018). Effect of molybdenum an zirconium on aluminium casting alloys. Livarski Vestnik. 68-78.
[2] Medved, J. & Kores, M.V.S. (2018). Development of innovative Al-Si-Mn-Mg alloys with hight mechanical properties. The Minerals, Metals & Materials Society. 373-380. DOI 10.1007/978-3-319-72284-9_50.
[3] Pisarek, B.P., Rapiejko, C., Szymczak, T. & Payniak, T. (2017). Effect of Alloy Additions on the Structure and Mechanical Properties of the AlSi7Mg0.3 Alloy. Archives of Foundry Engineering. 17(1),137-142. ISSN: 1897-3310.
[4] Mahmudi, R., Sepehrband, P. & Ghasemi, H.M. (2006). Improve properties of A319 aluminium casting alloy modified with Zr. Materials Letters. 2606-2610. DOI: 10.1016/j.matlet.2006.01.046
[5] Sepehrband, P., Mahmudi, R., Khomamizadeh, F. (2004). Effect of Zr addition on the aging behavior of A319 aluminium cast alloy. Scripta Materialia. 253-257. DOI: 10.1016/j.scriptamat.2004.10.025
[6] Rakhmonov, J., Timelli, G. & Bonollo, F. (2017) Characterization of the solidification path and microstructure of secondary Al-7Si-3Cu-0,3Mg alloy with Zr, V and Ni additions. Material characterization. ISSN:1044-5803.
[7] Krajewski, W., Geer, A., Buraś, J., Piwowarski, G. & Krajewski, P. (2019). New developments of hight-zinc Al-Zn-Cu-Mn cast alloys. Materialstoday Proceedings. 306-311. DOI: 10.1016/j.matpr.2018.10.410.
[8] Hermandez-Sandoval, J., Samuel, A.M. & Vatierra, F.H. (2016). Thermal analysis for detection of Zr-rich phases in Al-Si-Cu-Mg 354-type alloys. Journal of metalcasting. ISSN 1939-5981.
[9] Bolibruchova, D., Kuriš, M., Matejka, M., Major Gabryś, K., Vicen, M., (2020) Effect of Ti on selected properties of AlSi7Mg0.3Cu0.5 alloy with constant addition of Zr. Archives of Metalurgy and Materials. 66(1), 65-72. DOI: 10.24425/amm.2021.134760.

Go to article

Authors and Affiliations

M. Kuriš
1
D. Bolibruchova
1
M. Matejka
1
ORCID: ORCID
E. Kantoríková
1
ORCID: ORCID

  1. University of Zilina, Faculty of Mechanical Engineering, Department of Technological Engineering, Univerzitna 1, 010 26 Zilina, Slovak Republic

This page uses 'cookies'. Learn more