Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The article analyses the development of metrological control technologies for electronic distance measurement rangefinders to determine their main characteristic of accuracy – the root mean square error of distance measurement. It is established that the current reference linear bases are reliable and serve as the main means of transmitting a unit of length from the standards to the working means of measuring length. The article describes the existing linear reference bases and specifies their accuracy and disadvantages. It is concluded that the disadvantages of linear reference bases are deprived of the reference linear bases built in special laboratories. They use distances measured by the differential method with laser interferometers as reference distances. The application of such technology allowed to automate the processes of measurements and calculations. There is development of fibre-optic linear bases, in which optical fibres of known length are used as model lines. The article offers a new technical solution – a combination of fiber-optic and interference linear bases, which allows to qualitatively improve the system of metrological support of laser rangefinders. This is achieved by having a fiber-optic unit, which allows you to create baselines of increased length, while ensuring small dimensions of the baseline, and relative interference base, which provides high accuracy of linear measurements and does not require calibration of the base with a precision rangefinder, which eliminates several difficulties associated with changes in the refractive index, makes measurements independent of the wavelength of the radiation source and almost independent of the ambient temperature.
Go to article

Authors and Affiliations

Vsevolod Burachek
1
ORCID: ORCID
Dmytro Khomushko
2
ORCID: ORCID
Oleksiy Tereshchuk
3
ORCID: ORCID
Sergíy Kryachok
3
ORCID: ORCID
Vadim Belenok
4
ORCID: ORCID

  1. University of Emerging Tehnologies, Kyiv, Ukraine
  2. Private entrepreneur, Chernihiv, Ukraine
  3. Chernihiv Polytechnic National University, Chernihiv, Ukraine
  4. National Aviation University, Kyiv, Ukraine
Download PDF Download RIS Download Bibtex

Abstract

The development of efficient carbon dioxide sequestration and utilization technologies is an indispensable aspect of a wide range of measures directed at reducing the negative effects of anthropogenic emissions on the environment. One route is its capture via physical adsorption and further conversion to methane in the Sabatier reaction. The sorption process can be carried out, among others, in fixed-bed adsorptive reactors, in which the packing is made up of adsorbent and catalyst particles. Proper structuring of such a hybrid bed can contribute to increasing the efficiency of both stages of the process. Of importance in this regard is, first of all, the proper management of heat transfer. This study examines the sorption step of the operation of an adsorptive reactor for CO2 sequestration and methanation using a one-dimensional non-isothermal model of a layered fixed bed. Numerical calculations for different configurations and different volume adsorbent to catalyst ratios were carried out to determine how the hybrid structure of the bed and the atypical thermal waves it induces affect the sorption process. The results obtained prove that proper tailoring of the bed can be an excellent tool to control the temperature profiles and thus the performance of the apparatus and possibly its optimization.
Go to article

Authors and Affiliations

Marcin Gunia
1
ORCID: ORCID
Julia Ciećko
1
ORCID: ORCID
Katarzyna Bizon
1
ORCID: ORCID

  1. Faculty of Chemical Engineering and Technology, Cracow University of Technology, ul. Warszawska 24, 31-155 Kraków, Poland

This page uses 'cookies'. Learn more