Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 1
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The solid dielectrics used in the capacitors exhibit rather high-frequency relaxations. This means that in the radio-frequency range, the capacitors exhibit a constant capacity. When a liquid crystal is put into the capacitors, it is observed that in the radio-frequency range the capacity changes (decreases with frequency). This is due to the fact that liquid crystals exhibit relaxation in the radio-frequency range. In this paper, the formulas for the electric response of a low-frequency RC filter with liquid crystal characterized by complex electric permittivity are derived. One Debye-type relaxation is assumed in the calculations. The influence of strengths and relaxation time (frequency) of relaxation mode in liquid crystal on the electric response of low-frequency filters is discussed.
Go to article

Bibliography

  1. Relaxation Phenomena. (eds. Wróbel, S & Haase, W) (Springer-Verlag Berlin, 2003). https://doi.org/10.1007/978-3-662-09747-2
  2. Dunmur, D. & Toriyama, K. Dielectric propreties in Physical properties of liquid crystals (eds. Demus, D., Goodby, J., Gray, G. , Spiess, H. W. & Vill, V.) 129–150 (Wiley-VCH Weinheim, 1999)
  3. Lagerwall, S. Ferroelectric and Antiferroelectric Luquid Crystals. (Wiley-VCH Weinheim 1999)
  4. Buivydas, M. et al. Collective and non-collective excitations in antiferroelectric and ferrielectric liquid crystals studied by dielectric relaxation spectroscopy and electro-optic measurements. Cryst. 23, 723–739 (1997). https://doi.org/10.1080/026782997208000
  5. Holtzer, A. The Collected Papers of Peter J. W. Debye. (Interscience, New York – London, 1954). https://doi.org/10.1002/pol.1954.120137203
  6. Cole, K. & Cole, R. H. Dispersion and absorption in dielectrics. Alternating current characteristics. J. Chem. Phys. 9, 341–351 (1941). https://doi.org/10.1063/1.1750906
  7. Davidson, D. & Cole, R. H. Dielectric relaxation in glycerol, propylene glycol and n-propanol. J. Chem. Phys. 19, 1484–1491 (1951). https://doi.org/10.1063/1.1748105
  8. Havriliak, S. & Negami, S. A complex plane representation of diele-ctric and mechanical relaxation processes in some polymers. Polymer 8, 161–210 (1967). https://doi.org/10.1016/0032-3861(67)90021-3
  9. Perkowski, P. Dielectric spectroscopy of liquid crystals. Theoretical model of ITO electrodes influence on dielectric measurements. Opto-Electron. Rev. 17, 180–186 (2009). https://doi.org/10.2478/s11772-008-0062-8
  10. Perkowski, P. Dielectric spectroscopy of liquid crystals. Electrodes resistivity and connecting wires inductance influence on dielectric measurements, Opto-Electron. Rev. 20, 79–86 (2012). https://doi.org/10.2478/s11772-012-0004-3
  11. Perkowski, P. The parasitic effects in high-frequency dielectric spectroscopy of liquid crystals – the review. Crys. 48, 767–793 (2021). https://doi.org/10.1080/02678292.2020.1852619
  12. Fréedericksz, V. & Repiewa, A. Theoretisches und Experimentelles zur Frage nach der Natur der anisotropen Flüssigkeiten. Zeitschrift für Physik 42, 532–546 (1927). https://doi.org/10.1007/BF01397711 [in German]
  13. Mrukiewicz, M., Perkowski, P., Strzeżysz, O., Węgłowska, D. & Piecek. Pretransitional effects in a mesogenic mixture under an electric field, Phys. Rev. E. 97, 052704 (2018). https://doi.org/10.1103/PhysRevE.97.052704
  14. Li, J. et al. Development of ferroelectric nematic fluids with giant-ε dielectricity and nonlinear optical properties. Adv. 7, abf5047 (2021). https://doi.org/10.1126/sciadv.abf5047
  15. Chen, X., Korblova, E., Dong, D. & Clark, N. First-principles experimental demonstration of ferroelectricity in a thermotropic nematic liquid crystal: Polar domains and striking electro-optics. Proc. Natl. Acad. Sci. USA (PNAS) 117, 14021–14031 (2020). https://doi.org/10.1073/pnas.2002290117
  16. Mandle, R. , Cowling, S. J. & Goodby, J. W. Rational design of rod-like liquid crystals exhibiting two nematic phases. Chem. Eur. J. 23, 14554–14562 (2017). https://doi.org/10.1002/chem.201702742
  17. Mandle, R. , Cowling, S. J. & Goodby, J. W. A nematic to nematic transformation exhibited by a rod-like liquid crystal. Phys. Chem. Chem. Phys. 19, 11429–11435 (2017). https://doi.org/10.1039/C7CP00456G
  18. Sebastián, N. et al. Ferroelectric-ferroelastic phase transition in a nematic liquid crystal. Rev. Lett. 124, 037801 (2020). https://doi.org/10.1103/PhysRevLett.124.037801
Go to article

Authors and Affiliations

Paweł J. Perkowski
1
ORCID: ORCID

  1. Institute of Applied Physics, Military University of Technology, 2 gen. Kaliskiego St., 00-908 Warsaw, Poland

This page uses 'cookies'. Learn more