Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Slope deformations, i.e., all types of landslides of rock masses (flow, creep, fall down, etc.), caused by gravitational forces, are the most widespread implementation of geological hazards and a negative geomorphological phenomenon that threatens the security of the population, destroy all utility values of the affected regions, negatively affects the environment, and cause considerable economic damage. Nowadays, the Global Navigation Satellite Systems (GNSS) provide accurate data for precise observations around the world due to the growing number of satellites from multiple operators, as well as more powerful and advanced technologies and the implementation of mathematical and physical models more accurately describing systematic errors that degrade GNSS observations such as ionospheric, tropospheric, and relativistic effects or multipath. The correct combination of measurement methods provides even more precise, i.e., better measurement results or estimates of unknown parameters. The combination of measurement procedures and their significant evaluations represent the essential attribute of deformation monitoring of landslides concerning the protection of the environment and the population’s safety in the interest areas for the sustainable development of human society. This article presents the establishment and use of a local geodetic network in particular local space for various needs. Depending upon the specific conditions, it is possible to use GNSS technology to obtain accurate observations and achieve the results applicable to the deformation survey for subsequent processing of the adjustment procedure.
Go to article

Authors and Affiliations

Gabriel Weiss
1
ORCID: ORCID
Slavomir Labant
1
ORCID: ORCID
Juraj Gasinec
1
ORCID: ORCID
Hana Stankova
2
ORCID: ORCID
Pavel Cernota
2
ORCID: ORCID
Erik Weiss
3
ORCID: ORCID
Roland Weiss
3
ORCID: ORCID

  1. Technical University of Kosice, Kosice, Slovakia
  2. VSB – Technical University of Ostrava, Ostrava, Czech Republic
  3. University of Economics in Bratislava, Bratislava, Slovakia
Download PDF Download RIS Download Bibtex

Abstract

Radiation therapy can be adopted for many cancers, and it can damage healthy tissues and often induces skin lesions (pain/skin irritation/itchiness/dryness/swelling/redness). Many factors influence the adverse effects of radiotherapy, such as radiation dosage, dose frequency and fractioning, the area of skin exposed to radiation and treatment length. In this paper, multiple emulsions with a nonsteroidal anti-inflammatory drug-NSAID (diclofenac) were developed and evaluated for effective topical treatment of skin lesions following anticancer therapy. Multiple emulsions with different drop sizes were prepared in a Couette- Taylor flow contactor. High encapsulation efficiency (> 90%) of diclofenac and high volume packing fraction of the internal droplets (0.54–0.96) were obtained. In addition, due to the presence of a polymer with adhesive properties - sodium carboxymethylcellulose, high emulsion stability (> 60 days) was achieved. The emulsions displayed properties of shearthinning fluids. The release study of diclofenac from a complex emulsion structure confirmed the possibility of modifying the release rates. The effectiveness of emulsion formulations was evaluated based on the viability tests of the fibroblast cell line irradiated with UV dose (15 J/m2) and then treated with the emulsion with diclofenac. The results showed that the multiple emulsion-based formulations might be appropriate carriers for the topical delivery of NSAID drugs.
Go to article

Authors and Affiliations

Agnieszka Markowska-Radomska
1
ORCID: ORCID
Patryk Skowroński
1
ORCID: ORCID
Konrad Kosicki
2
ORCID: ORCID
Ewa Dluska
1
ORCID: ORCID

  1. Warsaw University of Technology, Faculty of Chemical and Process Engineering,Waryńskiego 1, 00-645 Warsaw, Poland
  2. University of Warsaw, Faculty of Biology, Institute of Genetics and Biotechnology, AdolfaPawińskiego 5A, 02-106 Warsaw, Poland

This page uses 'cookies'. Learn more