Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Destructive aftershocks such as the M w 7.2 Van earthquake on October 23, 2011, and the Hoy (Iran) earthquake with M w 5.9 on February 23, 2020, occurred in the province of Van and its surroundings. In earthquake studies, the issue of examining the distribution and homogeneity of earthquake incidences with Geographic Information Systems (GIS) based via spatial autocorrelation techniques is frequently investigated. Van province and its surroundings are among the areas with high earthquake risk due to its location on the East Anatolian Compressive Tectonic Block. The aim of this study is to analyze the spatial patterns of earthquakes with magnitude M w 4 and above that occurred in the province of Van and its surroundings during the instrumental period and to determine to cluster. Spatial cluster analyses play an important role in examining the distribution of seismicity. The data used in the study have been taken from the database system of the Earthquake Department of the Republic of Turkey Ministry of Interior Disaster and Emergency Management Presidency. Moran’s I and Getis-Ord Gi methods from spatial autocorrelation techniques were preferred on the earthquake data set to be used in this research. It has aimed to determine the dangerous areas by testing the earthquake distributions in clustered regions via spatial autocorrelation techniques.
Go to article

Authors and Affiliations

Güzide Miray Perihanoglu
1
ORCID: ORCID
Ömer Bilginer
2
ORCID: ORCID
Elif Akyel
2
ORCID: ORCID

  1. Van Yüzüncü Yıl University, Van, Turkey
  2. Izmir Katip Çelebi University, Izmir, Turkey
Download PDF Download RIS Download Bibtex

Abstract

The study examines various approaches oriented towards conceptual and numerical reduction of first-principle models, data-driven methodologies for surrogate (black box) and hybrid (grey box) modeling, and addresses the prospect of using digital twins in chemical and process engineering. In the case of numerical reduction of mechanistic models, special attention is paid to methodologies in which simulation data are used to construct light but robust numerical models while preserving all the physics of the problem, yielding reduced-order datadriven but still white-box models. In addition to reviewing various methodologies and identifying their applications in chemical engineering, including industrial process engineering, as well as fundamental research, the study outlines associated problems and challenges, as well as the risks posed by the era of big data.
Go to article

Authors and Affiliations

Katarzyna Bizon
1
ORCID: ORCID

  1. Cracow University of Technology, Faculty of Chemical Engineering and Technology,Warszawska 24, 31-155 Kraków, Poland

This page uses 'cookies'. Learn more