Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

This study presents the results of tests on the mixing power and distribution of three velocity components in the mixing tank for an FBT impeller during tank emptying with an operating impeller. A laser PIV system was used to determine speed distributions. It was found that for the relative liquid height in the tank H* = H/H0 ≈ 0.65 and H* ≈ 0.45, the liquid circulation in the impeller zone changed from radial to axial and vice versa. These changes were accompanied by changes in the mixing power which even reached 40%. In the theoretical part, a method of calculating the mixing power using the classical model of the central vortex and distribution of the tangential speed in the impeller zone was proposed. Although the method turned out to be inaccurate, it was useful for determining the relative power.
Go to article

Authors and Affiliations

Jacek Stelmach
1
ORCID: ORCID
Czesław Kuncewicz
1
ORCID: ORCID
Tomáš Jirout
2
ORCID: ORCID
František Rieger
2
ORCID: ORCID

  1. Lodz University of Technology, Faculty of Process and Environmental Engineering, Wólczańska 213, 93-005 Łódź
  2. Czech Technical University in Prague, Faculty of Mechanical Engineering, Technická 4, 166 07 Praha 6
Download PDF Download RIS Download Bibtex

Abstract

In the region of the Caucasus considered herein two large structural complexes have been identified: an autochthone, including the Gagra-Java zone (GJZ) of the Greater Caucasus fold-and-thrust belt, the Kura foreland basin (KFB), and an allochthone consisting of the Utsera-Pavleuri, Alisisgori-Chinchvelta, Sadzeguri- Shakhvetila, Zhinvali-Pkhoveli nappes and Ksani-Arkala parautochthone. The nappes are established on the basis of paleogeographic reconstructions, structural data, as well as drilling and geophysical data. The leading mechanism for the nappe formation is the advancement to the north and the underthrusting of the autochthone under the Greater Caucasus (A-type subduction). The nappes were formed mainly in the Late Alpine time (Late Eocene–Early Pliocene) and include only the sedimentary cover of the Earth’s crust (thin-skinned nappes). However the basal detachment (décollement) of the nappes, according to seismic data, penetrates deeply and cuts the pre-Jurassic crystalline basement, and even the entire Earth’s crust representing thick-skinned deformation. The total horizontal displacement of the flysch nappes of the southern slope of the Greater Caucasus in their eastern (Kakhetian) part is 90–100 km. While, considering the folding of the entire Greater Caucasus, the total transverse shortening of the Earth‘s crust within its limits is equal to 190–200 km.
Go to article

Authors and Affiliations

Irakli Gamkrelidze
1
Kakha Koiava
1
Ferando Maisadze
1
Giorgi Chichua
2

  1. Alexandre Janelidze Institute of Geology, Ivane Javakhishvili Tbilisi State University,31 Politkovskaia St., 0186, Tbilisi, Georgia
  2. National Agency for Oil and Gaz, 45 Kazbegi av., 0177, Tbilisi, Georgia

This page uses 'cookies'. Learn more