Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

In this paper, the climate and environmental datasets were processed by the scripts of Generic Mapping Tools (GMT) and R to evaluate changes in climate parameters, vegetation patters and land cover types in Burkina Faso. Located in the southern Sahel zone, Burkina Faso experiences one of the most extreme climatic hazards in sub-saharan Africa varying from the extreme floods in Volta River Basin, to desertification and recurrent droughts.. The data include the TerraClimate dataset and satellite images Landsat 8-9 Operational Land Imager (OLI) and Thermal Infrared (TIRS) C2 L1. The dynamics of target climate characteristics of Burkina Faso was visualised for 2013-2022 using remote sensing data. To evaluate the environmental dynamics the TerraClimate data were used for visualizing key climate parameter: extreme temperatures, precipitation, soil moisture, downward surface shortwave radiation, vapour pressure deficit and anomaly. The Palmer Drought Severity Index (PDSI) was modelled over the study area to estimate soil water balance related to the soil moisture conditions as a prerequisites for vegetation growth. The land cover types were mapped using the k-means clustering by R. Two vegetation indices were computed to evaluate the changes in vegetation patterns over recent decade. These included the Normalized Difference Vegetation Index (NDVI) and the Soil-Adjusted Vegetation Index (SAVI) The scripts used for cartographic workflow are presented and discussed. This study contributes to the environmental mapping of Burkina Faso with aim to highlight the links between the climate processes and vegetation dynamics in West Africa.
Go to article

Authors and Affiliations

Polina Lemenkova
1
ORCID: ORCID
Olivier Debeir
2
ORCID: ORCID

  1. Universität Salzburg, Salzburg, Austria
  2. Université Libre de Bruxelles, Brussels, Belgium
Download PDF Download RIS Download Bibtex

Abstract

Simplified optimization method using the MATLAB function fminbnd was adopted to determine the optimal feed temperature (OFT) for an isothermal packed-bed reactor (PBR) performing hydrogen peroxide decomposition (HPD) by immobilized Terminox Ultra catalase (TUC). The feed temperature was determined to maximize (minimize) the average reactant conversion (reactant concentration) over a fixed period time at the reactor outlet. The optimization was based on material balance and rate equation for enzyme action and decay and considered the effect of mass-transfer limitations on the system behavior. In order to highlight the relevance and applicability of the work reported here, the case of optimality under isothermal operating conditions is considered and the practical example is worked out. Optimisation method under consideration shows that inappropriate selection of the feed temperature may lead to a decrease in the bioreactor productivity.
Go to article

Authors and Affiliations

Ireneusz Grubecki
1
ORCID: ORCID
Wirginia Tomczak
2
ORCID: ORCID

  1. Cracow University of Technology, Faculty of Chemical Engineering and Technology, Warszawska 24, 31-155 Cracow, Poland
  2. Bydgoszcz University of Science and Technology, Seminaryjna 3, 85-326 Bydgoszcz, Poland

This page uses 'cookies'. Learn more