Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 14
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

This work presents an influence of cooling rate on crystallization process, structure and mechanical properties of MCMgAl12Zn1 cast magnesium alloy. The experiments were performed using the novel Universal Metallurgical Simulator and Analyzer Platform. The apparatus enabled recording the temperature during refrigerate magnesium alloy with three different cooling rates, i.e. 0.6, 1.2 and 2.4°C/s and calculate a first derivative. Based on first derivative results, nucleation temperature, beginning of nucleation of eutectic and solidus temperature were described. It was fund that the formation temperatures of various thermal parameters, mechanical properties (hardness and ultimate compressive strength) and grain size are shifting with an increasing cooling rate.

Go to article

Authors and Affiliations

M. Król
L.A. Dobrzański
Download PDF Download RIS Download Bibtex

Abstract

The paper presents a method of producing a grey cast iron casting locally reinforced with a titanium insert printed using SLM method (Selective Laser Melting). This article attempts to examine the impact of the selected geometry of titanium spatial insert on the surface layer formation on grey cast iron. The scope of the research focuses on metallographic examination - observation and analysis of the structure of the reinforced surface layer on a light and scanning microscope and a hardness measurement of the titanium layer area. Based on the obtained results, it was concluded that the reaction between titanium insert and metal (grey cast iron) locally develops numerous carbides precipitation (mainly TiC particles), which increases the hardness of the reinforced surface layer and local strengthening of the material. The ratio between the thickness of the support part (grey cast iron) and the working part (titanium insert) affects the resulting layers connection structure. The properties of the obtained reinforced surface layer depend mainly on the geometry of the insert (primarily on the internal dimensions of the connector) and the volume of the casting affecting the re-melting of the insert. A more concentrated structure of carbides precipitation occurs in castings with a full connector insert.

Go to article

Authors and Affiliations

A. Dziwoki
A. Dulska
J. Szajnar
M. Król
Download PDF Download RIS Download Bibtex

Abstract

The present study evaluates the microstructural features, mechanical properties, and wear characteristics of the newly developed hybrid composite of A356/ZrO2/Al2O3/SiC produced by compo-casting at 605±5 °C, 600 rpm for 15 minutes with less than 30% solid fraction in which Bi and Sn were added separately to the matrix before introducing reinforcements. FESEM micrographs and corresponding EDS illustrated the successful incorporation of particles in the matrix. Fine particles of ZrO2 were observed close to the coarse Al2O3, and SiC particles, along with Bi and Sn elements, were detected at the eutectic evolution region. The A356+Bi/Al2O3+ZrO2+SiC hybrid composite exhibited the lowest specific wear rate (1.642 ×10-7cm3/Nm) and friction coefficient (0.31) under applied loads of 5, 10, and 20 N, in line with the highest hardness (73.4 HBN). Analysis of the worn surfaces revealed that the wear mechanism is mostly adhesive in all synthesized composites, which changed to the combination of adhesive and abrasive mode in the case containing Bi and SiC. Inserting Bi not only leads to the refinement of eutectic Si but also enhances the adhesion between the matrix/particles and improves lubricity. This, in turn, reduces the wear rate and coefficient of friction, ultimately improving the performance of the hybrid composite.
Go to article

Bibliography

[1] Liang, Y.H., Wang, H.Y. & Yang, Y.F. (2008). Evolution process of the synthesis of TiC in the Cu-Ti-C system, Journal of Allloys and Compounds. 452(2), 298-303. https://doi.org/10.1016/j.jallcom.2006.11.024.

[2] Sahraeinejad, S., Izadi, H., Haghshenas, M. & Gerlich, A.P. (2015). Fabrication of metal matrix composites by friction stir processing with different Particles and processing parameters. Materials Science and Engineering: A. 626, 505-513. https://doi.org/https://doi.org/10.1016/j.msea. 2014.12.077.

[3] Devaraju, A., Kumar, A. & Kotiveerachari, B. (2013). Influence of addition of Grp/Al2O3p with SiCp on wear properties of aluminum alloy 6061-T6 hybrid composites via friction stir processing. Transactions of Nonferrous Metals Society of China (English Edition). 23(5), 1275-1280. https://doi.org/10.1016/S1003-6326(13)62593-5.

[4] Rajmohan, T., Palanikumar, K. & Ranganathan, S. (2013). Evaluation of mechanical and wear properties of hybrid aluminium matrix composites. Transactions of Nonferrous Metals Society of China (English Edition). 23(9), 2509-2517. https://doi.org/10.1016/S1003-6326(13)62762-4.

[5] Shayan, M., Eghbali, B. & Niroumand, B. (2019). Synthesis of AA2024-(SiO2np+TiO2np) hybrid nanocomposite via stir casting process. Materials Science and Engineering A. 756, 484-491. https://doi.org/10.1016/j.msea.2019.04.089.

[6] Rajmohan, T., Palanikumar, K. & Ranganathan, S. (2013). Evaluation of mechanical and wear properties of hybrid aluminium matrix composites. Transactions of Nonferrous Metals Society of China. 23(9), 2509-2517. https://doi.org/https://doi.org/10.1016/S1003-6326(13)62762-4.

[7] Lemine, A.S., Fayyaz, O., Yusuf, M., Shakoor, R.A., Ahmad, Z., Bhadra, J. & Al-Thani, N.J. (2022). Microstructure and mechanical properties of aluminum matrix composites with bimodal-sized hybrid NbC-B4C reinforcements. Materials Today Communications. 33, 104512, 1-10. https://doi.org/https://doi.org/10.1016/ j.mtcomm.2022.104512.

[8] Singh, J. & Chauhan, A. (2016). Characterization of hybrid aluminum matrix composites for advanced applications - A review. Journal of Materials Research and Technology. 5(2), 159-169. https://doi.org/10.1016/j.jmrt.2015.05.004.

[9] Fanani, E.W.A., Surojo, E., Prabowo, A.R. & Akbar, H.I. (2021). Recent progress in hybrid aluminum composite: Manufacturing and application, Metals (Basel). 11(12), 1919, 1-30. https://doi.org/10.3390/met11121919.

[10] Chandel, R., Sharma, N. & Bansal, S.A. (2021). A review on recent developments of aluminum-based hybrid composites for automotive applications. Emergent Materials. 4, 1243-1257. https://doi.org/10.1007/s42247-021-00186-6.

[11] James, J.S., Ganesan, M., Santhamoorthy, P. & Kuppan, P. (2018). Development of hybrid aluminium metal matrix composite and study of property. Materials Today Proceedings. 5(5), 13048-13054. https://doi.org/https:// doi.org/10.1016/j.matpr.2018.02.291.

[12] Srivyas, P.D. & Charoo, M.S. (2019). Application of hybrid aluminum matrix composite in automotive industry, in: Materials Today Proceedings. 18(7), 3189-3200. https://doi.org/10.1016/j.matpr.2019.07.195.

[13] Pranavi, U., Venkateshwar Reddy, P., Venukumar, S. & Cheepu, M. (2022). Evaluation of mechanical and wear properties of Al 5059/B4C/Al2O3 hybrid metal matrix composites. Journal of Composites Science. 6(3), 86, 1-13. https://doi.org/10.3390/jcs6030086.

[14] Kumaran, S.T., Uthayakumar, M., Aravindan, S., Rajesh, S. (2016). Dry sliding wear behavior of SiC and B4C-reinforced AA6351 metal matrix composite produced by stir casting process, Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications. 230(2), 484-491. https://doi.org/10.1177/1464420715579302.

[15] Khatkar, S.K., Suri, N.M., Kant, S. & Pankaj, (2018). A review on mechanical and tribological properties of graphite reinforced self lubricating hybrid metal matrix composites. Reviews on Advanced Materials Science. 56, 1-20. https://doi.org/10.1515/rams-2018-0036.

[16] Malaki, M., Fadaei Tehrani, A., Niroumand, B. & Gupta, M. (2021). Wettability in metal matrix composites. Metals. 11(7), 1034, 1-24. https://doi.org/10.3390/met11071034.

[17] Amirkhanlou, S. & Niroumand, B. (2010). Synthesis and characterization of 356-SiCp composites by stir casting and compocasting methods. Transactions of Nonferrous Metals Society of China. 20(3), 788-793. https://doi.org/https://doi.org/10.1016/S1003-6326(10)60582-1.

[18] Ghandvar, H., Farahany, S. & Idris, M.H. (2018). Effect of Wettability Enhancement of SiC Particles on Impact Toughness and Dry Sliding Wear Behavior of Compocasted A356/20SiCp Composites. Tribology Transactions. 61, 88-99. https://doi.org/10.1080/10402004.2016.1275902.

[19] Geng, L., Zhang, H., Li, H., Guan, L. & Huang, L. (2010). Effects of Mg content on microstructure and mechanical properties of SiCp/Al-Mg composites fabricated by semi-solid stirring technique. Transactions of Nonferrous Metals Society of China 20(10), 1851-1855. https://doi.org/https://doi.org/10.1016/S1003-6326(09)60385-X.

[20] Lashgari, H.R., Sufizadeh, A.R. & Emamy, M. (2010). The effect of strontium on the microstructure and wear properties of A356–10%B4C cast composites. Materials & Design. 31(4), 2187-2195. https://doi.org/10.1016/ J.MATDES.2009.10.049.

[21] Sobczak, N. (2005). Effects of titanium on wettability and interfaces in aluminum/ceramic systems. In K. Ewsuk, K. Nogi, M. Reiterer, A. Tomsia, S. Jill Glass, R. Waesche, K. Uematsu & M. Naito (Eds.), Characterization & Control of Interfaces for High Quality Advanced Materials (81-91). OH, USA 83: The American Ceramic Society: Columbus.

[22] Wójcik-Grzybek, D., Frydman, K., Sobczak, N., Nowak, R., Piatkowska, A. & Pietrzak, K. (2017). Effect of Ti and Zr additions on wettability and work of adhesion in Ag/c system. ElectronicMaterials. 45(1), 4-11.

[23] Cao, C., Chen, L., Xu, J., Choi, H. & Li, X. (2016). Strengthening Al–Bi–TiC0.7N0.3 nanocomposites by Cu addition and grain refinement. Materials Science and Engineering: A. 651, 332-335. https://doi.org/https://doi.org/ 10.1016/j.msea.2015.10.126.

[24] Tao, Z., Guo, Q., Gao, X. & Liu, L. (2011). The wettability and interface thermal resistance of copper/graphite system with an addition of chromium. Materials Chemistry and Physics. 128(1-2), 228-232. https://doi.org/https://doi.org/ 10.1016/j.matchemphys.2011.03.003.

[25] Dasch, J.M., Ang, C.C., Wong, C.A., Waldo, R.A., Chester, D., Cheng, Y.T., Powell, B.R., Weiner, A.M. & Konca, E. (2009). The effect of free-machining elements on dry machining of B319 aluminum alloy. Journal of Materials Processing Technology. 209(10), 4638-4644. https://doi.org/10.1016/j.jmatprotec.2008.11.041.

[26] Farahany, S., Ghandvar, H., Nordin, N.A., Ourdjini, A. & Idris, M.H. (2016). Effect of primary and eutectic Mg2Si crystal modifications on the mechanical properties and sliding wear behaviour of an Al–20Mg2Si–2Cu–xBi composite. Journal of Materials Science & Technology. 32(11), 1083-1097. https://doi.org/10.1016/ j.jmst.2016.01.014.

[27] Ghandvar, H., Farahany, S. & Abu Bakar, T.A. (2020). A novel method to enhance the performance of an ex-situ Al/Si-YSZ metal matrix composite. Journal of Alloys and Compounds. 823, 153673, 1-14. https://doi.org/10.1016/J.JALLCOM.2020.153673.

[28] Barzani, M.M., Farahany, S., Yusof, N.M. & Ourdjini, A. (2013). The influence of bismuth, antimony, and strontium on microstructure, thermal, and machinability of aluminum-silicon alloy. Materials and Manufacturing Processes. 28(11), 1184-1190. https://doi.org/10.1080/10426914. 2013.792425.

[29] Yusof, N.M., Razavykia, A., Farahany, S. & Esmaeilzadeh, A. (2016). Effect of modifier elements on machinability of Al-20%Mg2Si metal matrix composite during dry turning. Machining Science and Technology. 20(3), 460-474. https://doi.org/10.1080/10910344.2016.1191030.

[30] Mohanavel, V., Rajan, K., Suresh Kumar, S., Vijayan, G. & Vijayanand, M.S. (2018). Study on mechanical properties of graphite particulates reinforced aluminium matrix composite fabricated by stir casting technique. Materials Today Proceedings. 5(1), 2945-2950. https://doi.org/10.1016/j.matpr.2018.01.090.

[31] Sharma, P., Sharma, S. & Khanduja, D. (2016). Effect of graphite reinforcement on physical and mechanical properties of aluminum metal matrix composites. Particulate Science and Technology. 34 (1), 17-22. https://doi.org/10.1080/02726351.2015.1031924.

[32] Chandrasheker, J. Raju, N.V.S. (2022). Effect of Graphite Reinforcement on AA7050/B4C Metal Matrix Composites. AIP Conference Proceedings. 2648(1), 030013. https://doi.org/10.1063/5.0117657.

[33] Farahany, S., Ourdjini, A., Bakar, T.A.A. & Idris, M.H. (2014). On the refinement mechanism of silicon in Al-Si-Cu-Zn alloy with addition of bismuth. Metallurgical and Materials Transactions A. 45, 1085–1088. https://doi.org/10.1007/s11661-013-2158-0.

[34] Hemanth, J. (2005). Tribological behavior of cryogenically treated B4Cp/Al–12% Si composites. Wear. 258, 1732–1744. https://doi.org/10.1016/J.WEAR.2004.12.009.

[35] Uvaraja, V.C. & Natarajan, N. (2012). Optimization of Friction and Wear Behaviour in Hybrid Metal Matrix Composites Using Taguchi Technique. Journal of Minerals and Materials Characterization and Engineering. 11, 757-768. https://doi.org/10.4236/jmmce.2012.118063.

[36] Sharma, A., Sharma, V.M. & Paul, J. (2019). A comparative study on microstructural evolution and surface properties of graphene/CNT reinforced Al6061−SiC hybrid surface composite fabricated via friction stir processing. Transactions of Nonferrous Metals Society of China (English Edition). 29(10), 2005-2026. https://doi.org/10.1016/S1003-6326(19)65108-3.

[37] Amra, M., Ranjbar, K. & Hosseini, S.A. (2018). Microstructure and wear performance of Al5083/CeO2/SiC mono and hybrid surface composites fabricated by friction stir processing. Transactions of Nonferrous Metals Society of China (English Edition). 28(5), 866-878. https://doi.org/10.1016/S1003-6326(18)64720-X.

[38] Dinaharan, I. & Murugan, N. (2012). Dry sliding wear behavior of AA6061/ZrB 2 in-situ composite. Transactions of Nonferrous Metals Society of China (English Edition). 22(4), 810-818. https://doi.org/10.1016/S1003-6326(11)61249-1.

[39] Riahi, A.R. & Alpas, A.T. (2001). The role of tribo-layers on the sliding wear behavior of graphitic aluminum matrix composites. Wear. 251 (1-12), 1396-1407. https://doi.org/10.1016/s0043-1648(01)00796-7.

[40] Archard, J.F. (1953). Contact and Rubbing of Flat Surfaces. Journal of Applied Physics. 24(8), 981–988. https://doi.org/10.1063/1.1721448.

[41] García, C., Martín, F., Herranz, G., Berges, C. & Romero, A. (2018). Effect of adding carbides on dry sliding wear behaviour of steel matrix composites processed by metal injection moulding, Wear. 414–415. https://doi.org/10.1016/j.wear.2018.08.010.

[42] Pei, X., Pu, W., Yang, J. & Zhang, Y. (2020). Friction and adhesive wear behavior caused by periodic impact in mixed-lubricated point contacts. Advances in Mechanical Engineering. 12(2). https://doi.org/10.1177/1687814020901666.

[43] Popova, E., Popov, V.L. & Kim, D.E. (2018). 60 years of Rabinowicz’ criterion for adhesive wear. Friction. 6, 341-348. https://doi.org/10.1007/s40544-018-0240-8.

Go to article

Authors and Affiliations

S. Farahany
1
M.K. Hamdani
2
M.R. Salehloo
2
M. Krol
2
E. Cheraghali
3

  1. Buein Zahra Technical University, Iran
  2. Iran University of Science and Technology, Iran
  3. Silesian University of Technology
Download PDF Download RIS Download Bibtex

Abstract

The article presents the technology of layered casting with the use of 3D printing to make a frame insert. The insert was made of powdered titanium and then filled with liquid cast iron. The paper presents the results of research, including structure observation and hardness measurements, as well as abrasion resistance tests. The results indicate the possibility of creating a local reinforcement using a frame insert. The resulting casting is characterized by a local increase in hardness and, in addition, an increase in abrasion resistance of the entire surface layer. The quality of the obtained connection depends strongly on the casting parameters.

Go to article

Authors and Affiliations

A. Dulska
ORCID: ORCID
J. Szajnar
ORCID: ORCID
M. Król

This page uses 'cookies'. Learn more