Wyniki wyszukiwania

Filtruj wyniki

  • Czasopisma
  • Autorzy
  • Słowa kluczowe
  • Data
  • Typ

Wyniki wyszukiwania

Wyników: 8
Wyników na stronie: 25 50 75
Sortuj wg:

Abstrakt

Influence of the initial grain size on hot deformation behavior of the low-alloy Mn-Ti-B steel was investigated. The uniaxial compression tests were performed in range of the deformation temperatures of 900-1200°C and strain rates of 0.1-10 s–1. One set of samples was heated directly to the deformation temperature, which corresponded to the initial austenitic grain size of 19-56 μm; the other set of samples was uniformly preheated at the temperature of 1200°C. Whereas the values of activation energy, peak stress and steady-state stress values practically did not depend on the initial austenitic grain size, the peak strain values of coarser-grained structure significantly increase mainly at high values of the Zener-Hollomon parameter. This confirms the negative effect of the large size of the initial grain on the dynamic recrystallization kinetics, which can be explained by the reduction in nucleation density.

Przejdź do artykułu

Autorzy i Afiliacje

P. Kawulok
I. Schindler
R. Kawulok
P. Opěla
R. Sedláček

Abstrakt

The aim of the performed experiments was to determine the influence of a cooling rate on the evolution of microstructure and hardness of the steel 27MnCrB5. By using dilatometric tests performed on the plastometer Gleeble 3800 and by using mathematical modelling in the software QTSteel a continuous cooling transformation diagram for a heating temperature of 850°C was constructed. Conformity of diagrams constructed for both methods is relatively good, except for the position and shape of the ferrite nose. The values of hardness, temperatures of phase transformations and the volume fractions of structural phases upon cooling from the temperature of 850°C at the rate from 0.16°C · s–1 to 37.2°C · s–1 were determined. Mathematically predicted proportion of martensite with real data was of relatively solid conformity, but the hardness values evaluated by mathematical modelling was always higher.
Przejdź do artykułu

Autorzy i Afiliacje

I. Schindler
P. Kawulok
J. Mizera
S. Rusz
R. Kawulok
P. Opěla
M. Olszar
K.M. Čmiel

Abstrakt

The aim of the performed experiments was to determine the influence of deformation and of austenitization temperature on the kinetics of phase transformations during cooling of high-carbon steel (0.728 wt. % C). The CCT and DCCT diagrams for austenitization temperature 940°C and DCCT diagram for austenitization temperature 1000°C were constructed with the use of dilatometric tests. On the basis of obtained results, a featureless effect of austenitization temperature and deformation on the kinetics of phase transformations during cooling of investigated steel was observed. Critical cooling rates for the transformation of martensite in microstructure fluctuated from 5 to 7°C · s–1 (depending on the parameters of austenitization and deformation), but only at cooling rates higher than 8°C · s–1 a dominant share of martensite was observed in the investigated steel, which resulted in the significant increase of hardness.

Przejdź do artykułu

Autorzy i Afiliacje

P. Kawulok
P. Podolinský
P. Kajzar
I. Schindler
R. Kawulok
V. Ševčák
P. Opěla

Abstrakt

The work deal with an assembling and comparing of transformation diagrams of two low-alloy steels, specifically 16MnCrS5 and 20MnCrS5. In this work, diagrams of the type of CCT and DCCT of both steels were assembled. Transformation diagrams were assembled on the basis of dilatometric tests realized on the plastometer Gleeble 3800, of metallographic analyses and of hardness measurements. In addition, for comparison, the transformation diagrams were assembled even with use of the QTSteel 3.2 software. Uniform austenitization temperature of 850°C was chosen in case of both steels and even both types of diagrams. In case of both steels, an influence of deformation led to expected acceleration of phase transformations controlled by diffusion and also of bainite transformation. In both cases, the kinetics of martensitic transformation was not significantly affected by deformation.

Przejdź do artykułu

Autorzy i Afiliacje

R. Kawulok
P. Kawulok
I. Schindler
P. Opěla
S. Rusz
V. Ševčák
Z. Solowski

Abstrakt

Suitable and complete sets of stress-strain curves significantly affected by dynamic recrystallization were analyzed for 11 different iron, copper, magnesium, titanium or nickel based alloys. Using the same methodology, apparent hot deformation activation energy Qp and Qss values were calculated for each alloy based on peak stress and steady-state stress values. Linear dependence between quantities Qp and Qss was found, while Qp values are on average only about 6% higher. This should not be essential in predicting true stress of a specific material depending on the temperature-compensated strain rate and strain.

Przejdź do artykułu

Autorzy i Afiliacje

I. Schindler
ORCID: ORCID
P. Opěla
ORCID: ORCID
P. Kawulok
ORCID: ORCID
M. Sauer
ORCID: ORCID
S. Rusz
ORCID: ORCID
D. Kuc
K. Rodak

Abstrakt

A simple methodology was used for calculating the equivalent strain values during forming the sample alternately in two mutually perpendicular directions. This method reflects an unexpected material flow out of the nominal deformation zone when forming on the MAXStrain II device. Thus it was possible to perform two temperature variants of the simulation of continuous rolling and cooling of a long product made of steel containing 0.17% C and 0.80% Mn. Increasing the finishing temperature from 900°C to 950°C and decreasing the cooling rate from 10°C/s to 5°C/s led to a decrease in the content of acicular ferrite and bainite and an increase in the mean grain size of proeutectoid ferrite from about 8 µm to 14 µm. The result was a change in the hardness of the material by 15%.
Przejdź do artykułu

Autorzy i Afiliacje

I. Schindler
1
ORCID: ORCID
P. Kawulok
1
ORCID: ORCID
K. Konečná
1
ORCID: ORCID
M. Sauer
1
ORCID: ORCID
H. Navrátil
1
ORCID: ORCID
P. Opěla
1
ORCID: ORCID
R. Kawulok
1
ORCID: ORCID
S. Rusz
1
ORCID: ORCID

  1. VŠB – Technical University of Ostrava, Faculty of Materials Science and Technology, Ostrava, Czech Republic

Ta strona wykorzystuje pliki 'cookies'. Więcej informacji