Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

A highly sensitive photonic crystal fiber based on the surface plasmon resonance (PCF-SPR) biosensor for the detection of the density alteration in non-physiological cells (DANCE) is described. Human acute leukemia cells are determined by the discontinuous sucrose gradient centrifugation (DSGC) in which the cells are separated into several bands. The separated cells with different intracellular densities and refractive indexes (RI) ranging from 1.3342 to 1.3344 are distinguished in situ by means of the differential transmission spectrum. The biosensor shows a maximum amplitude sensitivity of 2000 nm/RIU and resolution as high as 5 × 10−5 RIU. According to the wavelength interrogation method, a maximum spectral sensitivity of 9000 nm/RIU in the sensing range between 1.33 and 1.53 is achieved, corresponding to a resolution as high as 1.11 × 10−5 RIU for the biosensor. The proposed PCF-SPR biosensor has promising application in biological and biochemical detection.

Go to article

Authors and Affiliations

F. Wang
Z. Sun
C. Liu
T. Sun
P.K. Chu
Download PDF Download RIS Download Bibtex

Abstract

Based on the electromagnetic thermal coupling analysis method, the cooling performance of different motor cooling models and the influence of key parameters of the cooling system on the cooling effect of the motor are investigated. First, the losses of various parts of the permanent magnet synchronous motors are obtained through electromagnetic calculations; the analysis results show that the stator core loss, winding copper loss, and eddy current loss of permanent magnets exceed 95% of the total loss of the motor. Second, the cooling performance of the three motor was compared and analyzed. The axial housing liquid cooling and oil spray cooling (Model B) has a better cooling performance and a higher cooling efficiency. Compared with the other two motor models, Model B can reduce the time to reach steady-state temperature by about 81.8%.Then the effects of coolant volume flow rate, coolant inlet temperature, and ambient temperature on the cooling effect of the motor are investi-gated. The results show that within a certain range, the rate of coolant inlet temperature change is approximately proportional to the internal temperature rise of the motor. The oil spray cooling system of Model B is less affected by ambient temperature and can be used for motor cooling in complex environments. The results of this study can provide a useful guidance for the design of the cooling system and the selection of coolant volume flow rate for oil-cooling motor with hairpin windings.
Go to article

Authors and Affiliations

Y.X. Liu
1
H. Wu
2
J. Zhang
2
P.X. Xu
3
S. Chen
3
X.H. He
1
Z.D. Sun
4

  1. School of Smart Health, Chongqing College of Electronic Engineering, Chongqing, 401331, China
  2. Department of Technology, Chongqing Tsingshan Industrial Co. Ltd., Chongqing, 402776, China
  3. College of Mechanical Engineering, Chongqing University of Technology, Chongqing 400044, China
  4. Hubei University of Automotive Technology, Shiyan Hubei, 442002, China

This page uses 'cookies'. Learn more