Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

This paper conducts research based on the hollow slab members in the reconstruction and expansion project of expressways, two types of numerical finite element models with and without considering bond-slip relationship of reinforcement and concrete are established, and verified by tests. The distribution characteristics of crack spacing in reinforced concrete beams are studied. The results show that the bond-slip characteristics of reinforced concrete have little effect on the load-deflection characteristics of 8m hollow slab beam. Due to the influence of the bond-slip relationship of reinforced concrete, the load-deflection curve is partially serrated, while without considering the bond-slip relationship of reinforced concrete, the load-deflection curve is smooth. In the numerical model without considering the bond-slip characteristics, almost all damage occurs in the longitudinal direction, and the distribution characteristics of cracks can’t be accurately determined. Regardless of whether the bond-slip is considered or not, the macroscopic characteristics of the stress distribution is: smaller near the support and larger at the mid-span. As secondary flexural cracks expand, models with and without consideration of bond-slip characteristics can’t calculate crack spacing based on the stress distribution characteristics of the reinforcement.
Go to article

Authors and Affiliations

Songtao Wang
1
ORCID: ORCID
Dawei Wang
2
ORCID: ORCID

  1. Shandong High-speed Group Co., Ltd., No.0, Longding Road, Jinan, China
  2. Geotechnical and Structural Engineering Research Center of Shandong University, 17923 Jingshi Road, Jinan, China
Download PDF Download RIS Download Bibtex

Abstract

In order to study the mechanical behavior of concrete-filled steel tube(CFST) short column with different void ratios under a certain eccentricity. A fiber model of concrete-filled steel tube section with different void heights was established. Compared with existing model test data, the axial force and flexural moment strength models of concrete-filled steel tube columns with different void ratios were established. The results show that, in the case of different void ratios, the cross-section strength envelope shows an overall contraction tendency with the increase of void ratio, and each line is basically parallel. A model for calculating the coefficient of axial load degradation was established. The Han’s flexural moment strength model of the flexural component was revised, and the strength model of concrete-filled steel tube column under eccentric compression considering void ratio was established, which provides a theoretical basis and method for the safety assessment during the operation of concrete-filled steel tube arch bridges.
Go to article

Authors and Affiliations

Junxi Song
1
ORCID: ORCID
Zhuowei Han
2
ORCID: ORCID
Dawei Wang
2
ORCID: ORCID
Xiaorui Lu
2
ORCID: ORCID

  1. CCCC Fourth Highway Engineering Co.Ltd, Beijing 100176, China
  2. Geotechnical and Structural Engineering Research Center, Shandong University, Jinan 250061, China

This page uses 'cookies'. Learn more