Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Computational Materials Engineering (CME) is a high technological approach used to design and develop new materials including the physical, thermal and mechanical properties by combining materials models at multiple techniques. With the recent advances in technology, the importance of microstructural design in CME environments and the contribution that such an approach can make in the estimation of material properties in simulations are frequently discussed in scientific, academic, and industrial platforms. Determination of the raw material characteristics that can be modeled in a virtual environment at an atomic scale by means of simulation programs plays a big role in combining experimental and virtual worlds and creating digital twins of the production chain and the products. In this study, a new generation, alternative and effective approach that could be used to the development of Al-Si based wheel casting alloys is proposed. This approach is based on the procedure of optimizing the physical and thermodynamic alloy properties developed in a computer environment with the CME technique before the casting phase. This article demonstrates the applicability of this approach in alloy development studies to produce Al-Si alloy wheels using the low pressure die casting (LPDC) method. With this study, an alternative and economical way is presented to the alloy development studies by trial and error in the aluminum casting industry. In other respects, since the study is directly related to the automotive industry, the reduction in fuel consumption in vehicles is an expected effect, as the new alloy aims to reduce the weight of the wheels. In addition to conserving energy, reducing carbon emissions also highlights the environmental aspects of this study.
Go to article

Bibliography

[1] Cullen, J.M. & Allwood, J.M. (2013). Mapping the global flow of aluminum: from liquid aluminum to end-use goods. Environmental Science & Technology. 47(7), 3057-3064. DOI: 10.1021/es304256s.
[2] Liu, G. & Müller, D.B. (2012). Addressing sustainability in the aluminum industry: a critical review of life cycle assessments. Journal of Cleaner Production. 35, 108-117. DOI: 10.1016/j.jclepro.2012.05.030.
[3] Ashkenazi, D. (2019). How aluminum changed the world: A metallurgical revolution through technological and cultural perspectives. Technological Forecasting and Social Change. 143, 101-113. DOI: 10.1016/j.techfore.2019.03.011.
[4] Musfirah, A.H. & Jaharah, A.G. (2012). Magnesium and aluminum alloys in automotive industry. Journal of Applied Sciences Research. 8(9): 4865-4875.
[5] Davies, J.R. (1993). Aluminum and Aluminum Alloys. ASM International, OH.
[6] Mondolfo, L.F. (1976). Aluminum alloys: Structure and Properties. London, Butterworths.
[7] Rana, R.S., Purohit, R. & Das S. (2012). Reviews on the influences of alloying elements on the microstructure and mechanical properties of aluminum alloys and aluminum alloy composites. International Journal of Scientific and Research Publications. 2(6).
[8] Heusler, L. & Schneider, W. (2002). Influence of alloying elements on the thermal analysis results of Al–Si cast alloys. Journal of Light Metals. 2(1), 17-26. DOI: 10.1016/s1471-5317(02)00009-3.
[9] Miller, W., Zhuang, L., Bottema, J., Wittebrood, A., De Smet, P., Haszler, A. & Vieregge, A. (2000). Recent development in aluminium alloys for the automotive industry. Materials Science and Engineering: A. 280(1), 37-49. DOI: 10.1016/s0921-5093(99)00653-x.
[10] Krol, M., Tanski, T., Snopinski, P. & Tomiczek, B. (2017). Structure and properties of aluminium–magnesium casting alloys after heat treatment. Journal of Thermal Analysis and Calorimetry. 127, 299-308.
[11] Callister, W.D. (1997). Materials science and engineering: An introduction. New York: John Wiley & Sons.
[12] Allison J., Backman D. & Christodoulou L. (2006). Integrated computational materials engineering: A new paradigm for the global materials profession. JOM. 58, 25-27.
[13] Allison, J., Li M., Wolverton, C. & Su, X.M. (2006). Virtual aluminum castings: an industrial application of ICME. JOM. 58, 28-35.
[14] Schmid-Fetzer, R. & Gröbner, J. (2001). Focused development of magnesium alloys using the CALPHAD approach. Advanced Engineering Materials. 3(12), 947-961. DOI: 10.1002/1527-2648(200112)3:1.
[15] Jung, J.-G., Cho, Y.-H., Lee, J.-M., Kim, H.-W. & Euh, K. (2019). Designing the composition and processing route of aluminum alloys using CALPHAD: Case studies. CALPHAD. 64, 236-247. DOI: 10.1016/j.calphad.2018.12.010.
[16] Jha, R. & Dulikravich, G.S. (2020). Solidification and heat treatment simulation for aluminum alloys with scandium addition through CALPHAD approach. Computational Materials Science. 182, 109749. DOI: 10.1016/j.commatsci.2020.109749.
[17] Assadiki A., Esin V.A., Bruno, M. & Martinez, R. (2018). Stabilizing effect of alloying elements on metastable phases in cast aluminum alloys by CALPHAD calculations. Computational Materials Science. 145, 1-7. DOI: 10.1016/j.commatsci.2017.12.056.
[18] Jiao, X.Y., Liu, C.F., Guo, Z.P., Tong, G.D., Ma, S.L., Bi, Y. et al. (2020). The characterization of Fe-rich phases in a high-pressure die cast hypoeutectic aluminum-silicon alloy. Journal of Materials Science & Technology. 51, 54-62. DOI: 10.1016/j.jmst.2020.02.040.
[19] Pehlivanoglu, U., Yağcı, T. & Çulha, O. (2021). Effects of air-cooling-hole geometries on a low-pressure die-casting process. Materials and Technology. 55(4), 549-558. DOI: 10.17222/mit.2021.043
[20] Lumley, R. (2011). Fundamentals of Aluminium Metallurgy. Wood Publishing Limited, Oxford, Cambridge, Philadelphia, New Delhi.
[21] Snugovsky, L., Major, J.F., Perovic, D.D. & Rutter, J.W. (2000). Silicon segregation in aluminium casting alloy. Materials Science and Technology. 16(2), 125-128. DOI: 10.1179/026708300101507604.
[22] Ebhota, W.S. & Jen, T.C. (2017). Effects of modification techniques on mechanical properties of Al-Si cast alloys. In Subbarayan Sivasankaran (Eds.), Aluminium Alloys - Recent Trends in Processing, Characterization, Mechanical Behavior and Applications. London, UK: IntechOpen. DOI: 10.5772/intechopen.70391
[23] Jiang, W., Yu, W., Li, J., You, Z., Li, C. & Lv, X. (2018). Segregation and morphological evolution of Si phase during electromagnetic directional solidification of hypereutectic Al-Si alloys. Materials. 12(1), 10. DOI: 10.3390/ma12010010
[24] Yıldırım, M. & Özyürek, D. (2013). The effects of Mg amount on the microstructure and mechanical properties of Al–Si–Mg alloys. Materials and Design. 51, 767-774. DOI: 10.1016/j.matdes.2013.04.089.
[25] Kumar V., Mehdi, H., Kumar A. (2015). Effect of silicon content on the mechanical properties of aluminum alloy. International Research Journal of Engineering and Technology. 2(4), 1326-1330.
[26] Li, W., Cui, S., Han, J. & Xu, C. (2006). Effect of silicon on the casting properties of Al-5.0% Cu alloy. Rare Metals. 25, 133-135. DOI: 10.1016/s1001-0521(08)60067-4
[27] Yang, Y.S. & Tsao, C.Y.A. (1997). Viscosity and structure variations of Al-Si alloy in the semi-solid state. Journal of Materials Science, 32(8), 2087-2092. DOI: 10.1023/A:1018522805543.
[28] Campbell, J. (2003). Castings: the new metallurgy of cast metals. 2nd Edition, Elsevier Butterworth-Heinemann, Oxford.
[29] Atasoy, Ö.A. (1990). Ötektik Alaşımlar: Katılaşma Mekanizmaları ve Uygulamaları. İstanbul Technical University, İstanbul.
[30] Sahoo, M. & Sahu, S. (2014). Principles of metal casting. 3rd Edition, McGraw-Hill Education.
[31] Clemex, Dendrite Arm Spacing in Aluminum Alloy Report. Retrieved August 24, 2021, from https://clemex.com/analysis/dentritic-arm-spacing/
[32] Peres, M.D., Siqueira, C.A. & Garcia, A. (2004). Macrostructural and microstructural development in Al-Si alloys directionally solidified under unsteady-state conditions. Journal of Alloys and Compounds. 381(1-2), 168-181. DOI: 10.1016/j.jallcom.2004.03.107.
[33] Spear, R.E. & Gardner, G.R. (1963). Dendrite cell size. AFS Transactions. 71, 209-215. [34] Rhadhakrishna, K, Seshan, S. & Seshadri, M.R. (1980). Dendrite arm spacing in aluminium alloy castings, AFS Transactions. 88, 695-702.
[35] Flemings, M. Kattamis, T.Z. & Bardes, B.P. (1991). Dendrite arm spacing in aluminium alloys. AFS Transactions. 99, 501-506.
Go to article

Authors and Affiliations

T. Yağcı
1
Ü. Cöcen
1
O. Çulha
2

  1. Dokuz Eylul University, Dept. of Metallurgical and Materials Engineering, İzmir, Turkey
  2. Manisa Celal Bayar University, Dept. of Metallurgical and Materials Engineering, Manisa, Turkey
Download PDF Download RIS Download Bibtex

Abstract

Aluminum casting alloys are widely used in especially automotive, aerospace, and other industrial applications due to providing desired mechanical characteristics and their high specific strength properties. Along with the increase of application areas, the importance of recycling in aluminum alloys is also increasing. The amount of energy required for producing primary ingots is about ten times the amount of energy required for the production of recycled ingots. The large energy savings achieved by using the recycled ingots results in a significant reduction in the amount of greenhouse gas released to nature compared to primary ingot production. Production can be made by adding a certain amount of recycled ingot to the primary ingot so that the desired mechanical properties remain within the boundary conditions. In this study, by using the A356 alloy and chips with five different quantities (100% primary ingots, 30% recycled ingots + 70% primary ingots, 50% recycled ingots + 50% primary ingots, 70% recycled ingots + 30% primary ingots, 100% recycled ingots), the effect on mechanical properties has been examined and the maximum amount of chips that can be used in production has been determined. T6 heat treatment was applied to the samples obtained by the gravity casting method and the mechanical properties were compared depending on the amount of chips. Besides, microstructural examinations were carried out with optical microscopy techniques. As a result, it has been observed that while producing from primary ingots, adding 30% recycled ingot to the alloy composition improves the mechanical properties of the alloy such as yield strength and tensile strength to a certain extent. However, generally a downward pattern was observed with increasing recycled ingot amount.
Go to article

Bibliography

[1] Miller, W.S., Zhuang, L., Bottema, J., Wittebrood, A.J., Smet, P. De., Haszler, A. & Vieregge, A. (2000). Recent development in aluminium alloys for the automotive industry. Materials Science and Engineering: A. 280, 37-49. DOI: 10.1016/S0921-5093(99)00653-X
[2] Cagan, S.C., Venkatesh, B. & Buldum, B.B. (2020). Investigation of surface roughness and chip morphology of aluminum alloy in dry and minimum quantity lubrication machining. Materials Today: Proceedings. 27, 1122-1126. DOI: 10.1016/j.matpr.2020.01.547
[3] Naumova, E.A., Belov, N.A. & Bazlova, T.A. (2015). Effect of heat treatment on structure and strengthening of cast eutectic aluminum alloy Al9Zn4Ca3Mg. Metal Science and Heat Treatment. 57, 5-6. DOI: 10.1007/s11041-015-9874-6
[4] Krolo, J., Gudić, S., Vrsalović, L., Branimir, L., Zvonimir, D. (2020). Fatigue and corrosion behavior of solid-state recycled aluminum alloy EN AW 6082. Journal of Materials Engineering and Performance. 29(7), 4310-4321. DOI: 10.1007/s11665-020-04975-8
[5] TMMOB Metalurji Mühendisleri Odası, Alüminyum Komisyonu, Alüminyum Raporu.
[6] Dhindaw, B.K., Aditya, G.S.L. & Mandal, A. (2020). Recycling and downstream processing of aluminium alloys for automotive applications. In Saleem Hashmi and Imtiaz Ahmed Choudhury (Eds.), Encyclopedia of Renewable and Sustainable Materials. 3 (pp.154-161). Elsevier Inc.
[7] Grjotheim, K., Krohn, C., Malinovsky, M., Matiasovsky, K., Thonstad, J. (1982). Aluminium electrolysis: Fundamentals of the Hall-Heroult Process. 2nd Edition. University of California.
[8] Peng, T., Ou, X., Yan, X. & Wang, G. (2019). Life-cycle analysis of energy consumption and GHG emissions of aluminium production in China. Energy Procedia. 158, 3937- 3943. DOI: 10.1016/j.egypro.2019.01.849
[9] Prasada Rao, A. K. (2011). An approach for predicting the composition of a recycled Al-Alloy. Transactions of the Indian Institute of Metals. 64, 615-617. DOI: 10.1007/s12666-011-0084-7
[10] Capuzzi, S. & Timelli, G. (2018). Preparation and melting of scrap in aluminum recycling: A Review. Metals. 8(4), 249. DOI: 10.3390/met8040249
[11] Khalid, S.N.A.B. (2013). Mechanical strength of ascompacted aluminium alloy waste chips. Malaysia: MSc Thesis, Universiti Tun Hussein Onn Malaysia.
[12] Bjurenstedt, A. (2017). On the influence of imperfections on microstructure and properties of recycled Al-Si casting alloys. Sweden: PhD. Thesis, Jönköping University Jönköping.
[13] Bogdanoff, T., Seifeddine, S. & Dahle, A. K. (2016). The effect of Si content on microstructure and mechanical properties of Al-Si alloy. La Metallurgia Italiana. 108(6), 65- 69.
[14] Wang, Y., Liao, H., Wu, Y. & Yang, J. (2014). Effect of Si content on microstructure and mechanical properties of Al– Si–Mg alloys. Materials & Design. 53, 634-638.
[15] Ozaydin, O. & Kaya, A. (2019). Influence of different Si levels on mechanical properties of aluminium casting alloys. European Journal of Engineering And Natural Sciences. 3(2), 165-172.
[16] Zhang, X., Ahmmed, K., Wang, M. & Hu, H. (2012). Influence of aging temperatures and times on mechanical properties of vacuum high pressure die cast aluminum alloy A356. Advanced Materials Research. 445, 277-282. DOI: 10.4028/www.scientific.net/AMR.445.277
[17] Ozaydin, O., Dokumaci, E., Armakan, E., Kaya, A. (2019). The effects of artificial ageing conditions on a356 aluminum cast alloys. In ECHT 2019 - European Conference on Heat Treatment. Bardolino, Italy.
[18] Peng, J., Tang, X., He, J. & Xu, D. (2011). Effect of heat treatment on microstructure and tensile properties of A356 alloys. Trans. Nonferous Met. Soc. Chinea. 21, 1950-1956. DOI: 10.1016/S1003-6326(11)60955-2
[19] Wang, L., Makhlouf, M. & Apelian, D. (2013). Aluminium die casting alloys: alloy composition, microstructure, and properties-performance relationships. International Materials Reviews. 40(6), 221-238. DOI: 10.1179/imr.1995.40.6.221
[20] Yuksel, C.K., Tamer, O., Erzi, E., Aybarc, U., Cubuklusu, E., Topcuoglu, O., Cigdem, M. & Dispinar, D. (2016). Quality evaluation of remelted A356 scraps. Archives of Foundry Engineering. 16(3), 151-156. DOI: 10.1515/afe-2016-0069
[21] Hu, M., Ji, Z., Chen, X. & Zhang, Z. (2007). Effect of chip size on mechanical property and microstructure of AZ91D magnesium alloy prepared by solid state recycling. Materials Characterization. 59(4), 385-389. DOI: 10.1016/j.matchar.2007.02.002
[22] Testing Of Metallic Materials – Tensile Test Pieces, Prüfung Metallischer Werkstoffe – Zugproben Deutsche Norm DIN 50125, 2016.
[23] Metallic Materials - Tensile Testing - Part 1:Method Of Test at Room Temperature, PN-EN ISO 6892-1: 2020-05
[24] Taylor J.A. (2012). Iron-containing intermetallic phases in AlSi based casting alloys. Procedia Materials Science. 1, 19-33. DOI: 10.1016/j.mspro.2012.06.004
[25] Eisaabadi, G.B., Davami, P., Kim, S.K., Varahram, N., Yoon, Y.O. & Yeom, G.Y. (2012). Effect of oxide films, inclusions and Fe on reproducibility of tensile properties in cast Al–Si– Mg alloys: Statistical and image analysis. Materials Science and Engineering: A 558, 134-143. DOI: 10.1016/j.msea.2012.07.101
[26] Schlesinger, M.E. (2013). Aluminum Recycling. CRC Press. 2nd Edition. CRC Press
[27] Dispinar, D., Akhtar, S., Nordmark, A., Sabatino, M. Di. & Arnberg, L. (2010). Degassing, hydrogen and porosity phenomena in A356. Materials Science and Engineering: A. 527(17), 3719-3725. DOI: 10.1016/j.msea.2010.01.088
[28] Akhtar, S., Dispinar, D., Arnberg, L. & Sabatino, M.Di. (2009). Effect of hydrogen content melt cleanliness and solidification conditions on tensile properties of A356 alloy. International Journal of Cast Metals Research. 22(4), 22-25. DOI: 10.1179/136404609X367245
[29] Bösch, D., Pogatscher, S., Hummel, M., Fragner, W., Uggowitzer, P.J., Göken, M. & Höppel, H.W. (2015). Secondary Al-Si-Mg high-pressure die casting alloys with enhanced ductility. Metallurgical and Materials Transactions A. 46(3), 1035-1045.
[30] Taylor, J.A. (2004). The effect of iron in Al-Si casting alloys. In 35th Australian Foundry Institute National Conference, 31 Oct - 3 Nov 2004 (148-157). Australia: Australian Foundry Institute (AFI).
[31] Campbell, J. (1993). Castings, 2nd Edition. Elsevier
Go to article

Authors and Affiliations

A.Y. Kaya
1
O. Özaydın
1
T. Yağcı
2
A. Korkmaz
2
E. Armakan
1
O. Çulha
2

  1. Cevher Alloy Wheels Co. / R&D Dept., İzmir, Turkey
  2. Manisa Celal Bayar University, Engineering Faculty, Dept. of Metallurgical and Materials Engineering, Manisa, Turkey

This page uses 'cookies'. Learn more