Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 44
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

In this paper, the basic cutting characteristics such as cutting forces, cutting power and its distribution, specific cutting energies were determined taking into account variable tool corner radius ranging from 400 to 1200 μm and constant cutting parameters typical for hard turning of a hardened 41Cr4 alloy steel of 55 ± 1 HRC hardness. Finish turning operations were performed using chamfered CBN tools. Moreover, selected roughness profiles produced for different tool corner radius were compared and appropriate surface roughness parameters were measured. The measured values of Ra and Rz roughness parameters are compared with their theoretical values and relevant material distribution curves and bearing parameters are presented.

Go to article

Bibliography

[1] J.P. Davim. Machining of Hard Materials. Springer, London, 2011.
[2] W. Grzesik. Advanced Machining Processes of Metallic Materials. Elsevier Science, 2008.
[3] W. Grzesik. Prediction of the functional performance of machined components based on surface topography: State of the art. Journal of Materials Engineering and Performance, 25(10):4460–4468, 2016. doi: 10.1007/s11665-016-2293-z.
[4] P. Nieslony, G.M. Krolczyk, K. Zak, R.W. Maruda, and S. Legutko. Comparative assessment of the mechanical and electromagnetic surfaces of explosively clad Ti–steel plates after drilling process. Precision Engineering, 47:104–110, Jan. 2017. doi: 10.1016/j.precisioneng.2016.07.011.
[5] R. Chudy and W. Grzesik. Comparison of power and energy consumption for hard turning and burnishing operations of 41CR4 steel. Journal of Machine Engineering, 15, 2015.
[6] Y.K. Chou and H. Song. Tool nose radius effects on finish hard turning. Journal of Materials Processing Technology, 148(2):259–268, 2004. doi: 10.1016/j.jmatprotec.2003.10.029.
[7] R. Meyer, J. Köhler, and B. Denkena. Influence of the tool corner radius on the tool wear and process forces during hard turning. The International Journal of Advanced Manufacturing Technology, 58(9):933–940, 2012. doi: 10.1007/s00170-011-3451-y.
[8] W. Grzesik, B. Denkena, K. Zak, T. Grove, and B. Bergmann. Energy consumption characterization in precision hard machining using CBN cutting tools. The International Journal of Advanced Manufacturing Technology, 85(9):2839–2845, 2016. doi: 10.1007/s00170-015-8091-1.
[9] Sandvik Coromant. Machining Handbook. www.sandvik.coromant.com.
[10] W. Grzesik and K. Zak. Producing high quality hardened parts using sequential hard turning and ball burnishing operations. Precision Engineering, 37(4):849–855, 2013. doi: 10.1016/j.precisioneng.2013.05.001.
[11] W. Grzesik, J. Rech, and K. Zak. Characterization of surface textures generated on hardened steel parts in high-precision machining operations. The International Journal of Advanced Manufacturing Technology, 78(9-12):2049–2056, 2015. doi: 10.1007/s00170-015-6800-4.
[12] H.A. Kishawy, A. Haglund, and M. Balazinski. Modelling of material side flow in hard turning. CIRP Annals – Manufacturing Technology, 55(1):85–88, 2006. doi: 10.1016/S0007-8506(07)60372-2.
[13] W. Grzesik. Generation and modelling of surface roughness in machining using geometrically defined cutting tools. In J.P. Davim, editor, Metal Cutting, chapter 6. Nova Science Publishers, New York, 2010.
[14] N. Schaal, F. Kuster, and K. Wegener. Springback in metal cutting with high cutting speeds. Procedia CIRP, 31:24–28, 2015. doi: 10.1016/j.procir.2015.03.065.
Go to article

Authors and Affiliations

Krzysztof Żak
1

  1. Faculty of Mechanical Engineering, Opole University of Technology, Poland
Download PDF Download RIS Download Bibtex

Abstract

This paper presents a comprehensive methodology for measuring and characterizing the surface topographies on machined steel parts produced by precision machining operations. The performed case studies concern a wide spectrum of topographic features of surfaces with different geometrical structures but the same values of the arithmetic mean height Sa. The tested machining operations included hard turning operations performed with CBN tools, grinding operations with Al2O3 ceramic and CBN wheels and superfinish using ceramic stones. As a result, several characteristic surface textures with the Sa roughness parameter value of about 0.2 μm were thoroughly characterized and compared regarding their potential functional capabilities. Apart from the standard 2D and 3D roughness parameters, the fractal, motif and frequency parameters were taken in the consideration.

Go to article

Authors and Affiliations

Wit Grzesik
Krzysztof Żak
Download PDF Download RIS Download Bibtex

Abstract

It is well known that the magnitudes of the coefficients of the discrete Fourier transform (DFT) are invariant under certain operations on the input data. In this paper, the effects of rearranging the elements of an input data on its DFT are studied. In the one-dimensional case, the effects of permuting the elements of a finite sequence of length N on its discrete Fourier transform (DFT) coefficients are investigated. The permutations that leave the unordered collection of Fourier coefficients and their magnitudes invariant are completely characterized. Conditions under which two different permutations give the same DFT coefficient magnitudes are given. The characterizations are based on the automorphism group of the additive group ZN of integers modulo N and the group of translations of ZN. As an application of the results presented, a generalization of the theorem characterizing all permutations that commute with the discrete Fourier transform is given. Numerical examples illustrate the obtained results. Possible generalizations and open problems are discussed. In higher dimensions, results on the effects of certain geometric transformations of an input data array on its DFT are given and illustrated with an example.

Go to article

Authors and Affiliations

S. Hui
S.H. Żak
Download PDF Download RIS Download Bibtex

Abstract

The tribological behavior of the PVD-TiAlN coated carbide inserts in dry sliding against two-phase (α-β) titanium alloy,Ti6Al4V grade, was investigated. A modified pin-on-disc device was used to conduct experiments under variable normal load and sliding speed. Scanning electron microscopy (SEM) and X-ray micro-analyses by EDS were applied for observations of wear scars and wear products. It was revealed that the increase of sliding speed contributes to decreasing the friction coefficient under a low normal force, whereas the increase of the normal loading causes the friction coefficient is less sensitive to changes in the sliding speed and its values are equal to μ = 0.26-0.34. The adhesive nature of wear along with severe abrasive action of the Ti alloy were documented.

Go to article

Authors and Affiliations

Wit Grzesik
Joanna Małecka
Zbigniew Zalisz
Krzysztof Żak
Piotr Niesłony
Download PDF Download RIS Download Bibtex

Abstract

The aim of this work is to develop a numerical model capable of predicting the grain density in the Mg-based matrix phase of an AZ91/SiC composite, as a function of the total mass fraction of the embedded SiC particles. Based on earlier work in a range of alloy systems, we assume an exponential relationship between the grain density and the maximum supercooling during solidification. Analysis of data from cast samples with different thicknesses, and mass fractions of added SiCp, permits conclusions to be drawn on the role of SiCp in increasing grain density. By fitting the data, an empirical nucleation law is derived that can be used in a micro model. Numerical simulation based on the model can predict the grain density of magnesium alloys containing SiC particles, using the mass fraction of the particles as inputs. These predictions are compared with measured data.

Go to article

Authors and Affiliations

J. Lelito
H. Krawiec
V. Vignal
B. Gracz
P.L. Żak
M. Szucki
Download PDF Download RIS Download Bibtex

Abstract

During excavation of the cremation cemetery of urnfield culture in Legnica at Spokojna Street (Lower Silesia, Poland), dated to 1100-700

BC, the largest - so far in Poland – a collection of casting moulds from the Bronze Age was discovered: three moulds for axes casting

made out of stone and five moulds for casting sickles, razors, spearhead and chisels, made out of clay. This archaeological find constituted

fittings of foundrymen’s graves. In order to perform the complete analysis of moulds in respect of their application in the Bronze Age

casting technology analytical methods, as well as, computer aided methods of technological processes were used. Macroscopic

investigations were performed and the X-ray fluorescence spectrometry method was used to analyse the chemical composition and metal

elements content in mould cavities. Moulds were subjected to three-dimensional scanning and due to the reverse engineering the geometry

of castings produced in these moulds were obtained.

The gathered data was used to perform design and research works by means of the MAGMA5

software. Various variants of the pouring

process and alloys solidification in these archaeological moulds were simulated. The obtained results were utilised in the interpretation of

the Bronze Age casting production in stone and clay moulds, with regard to their quality and possibility of casting defects occurrence

being the result of these moulds construction.

The reverse engineering, modelling and computer simulation allowed the analysis of moulds and castings. Investigations of casting moulds

together with their digitalisation and reconstruction of casting technology, confirm the high advancement degree of production processes

in the Bronze Age.

Go to article

Authors and Affiliations

A. Garbacz-Klempka
Z. Kwak
T. Stolarczyk
M. Szucki
P.L. Żak
D. Ścibior
K. Nowak

This page uses 'cookies'. Learn more