Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 7
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Soils of Russian European North were investigated in terms of stability and quality of organic matter as well as in terms of soils organic matter elemental composi-tion. Therefore, soil humic acids (HAs), extracted from soils of different natural zones of Russian North-East were studied to characterize the degree of soil organic matter stabilization along a zonal gradient. HAs were extracted from soil of different zonal environments of the Komi Republic: south, middle and north taiga as well as south tundra. Data on elemental composition of humic acids and fulvic acids (FAs) extracted from different soil types were obtained to assess humus formation mechanisms in the soils of taiga and tundra of the European North-East of Russia. The specificity of HAs elemental composition are discussed in relation to environmental conditions. The higher moisture degree of taiga soils results in the higher H/C ratio in humic substances. This reflects the reduced microbiologic activity in Albeluvisols sods and subsequent conser-vation of carbohydrate and amino acid fragments in HAs. HAs of tundra soils, shows the H/C values decreasing within the depth of the soils, which reflects increasing of aromatic compounds in HA structure of mineral soil horizons. FAs were more oxidized and contains less carbon while compared with the HAs. Humic acids, extracted from soil of different polar and boreal environments differ in terms of elemental composition winch reflects the climatic and hydrological regimes of humification.
Go to article

Authors and Affiliations

Evgeny Abakumov
Evgeny Lodygin
Vasily Beznosikov
Download PDF Download RIS Download Bibtex

Abstract

Humification plays an important role in stabilization of organic matter in soils of the cryolithic zone. In this context, the degree of organic matter stabilization has been assessed, using instrumental methods, for permafrost peat soils of the eastern European Arctic, based on selected plots from within the Komi Republic (Russian Federation). Humic substances (HSs) isolated from the mire permafrost peats of the forest-tundra subzone of the European Arctic have been characterized in terms of molecular composition. This was accomplished using elemental and amino acid fragments (AAFs) composition. Solid-state 13C nuclear magnetic resonance (13C NMR) spectroscopy was utilized to identify the structure of HSs. Changes in the molar x(H) : x(C) ratio, ratio of aromatic to paraffin fragments and ratio of hydroxy AAFs to heterocyclic AAFs along the peat profiles have been revealed. They are due to the activation of cryogenic processes in the upper part of the seasonally thawing layer, the natural selection of condensed humic molecules, the botanical composition and degree of degradation of peat, which reflect the climatic features of the area in the Holocene. Humic acids and fulvic acids of the peat soils showed the prevalence of compounds with a low degree of condensation and a low portion of aromatic fragments. The aromaticity degree showed the trend to increase within the depth. Changes of quantitative and qualitative parameters of specific organic compounds occur at the permafrost boundary of peatlands, which can serve as an indicator of recent climate changes in environments from the high latitudes. The presented data can be useful in the evaluation of soil organic matter stabilization degree in the active layer and below the permafrost table.

Go to article

Authors and Affiliations

Roman Vasilevich
Evgeny Lodygin
Evgeny Abakumov
Download PDF Download RIS Download Bibtex

Abstract

Background concentrations of main trace elements and polycyclic aromatic hydrocarbons (PAHs) were investigated in pristine soils of the Beliy Island situated in the Kara Sea, Yamal autonomous region, North-West Siberia, Russia. Belyi Island is considered as reference landscpae for further investigation of soil polychemical contamination of the Yamal region. Three plots with different functional load (mature ecosystem, occasionally and permanently affected plots) were investigated with aim to evaluate the trend of long term polychemical effect on Stagnic Cryosols - benchmark soil type of the Yamal region. Accumulation of trace elements was not fixed in all soils investigated due to absence of direct sources of heavy metals on the territory of the Beliy Island. At the same time, there were essential alterations of PAHs fractional composition and content due to pronounced accumulation of the petroleum products combustion in the vicinity of the permanent meteorological station and former seasonal field base. The most intensive and statistically significant accumulation was noted for phenanthrene, anthracene, benzo[k]fluoranthene and benzo[a]pyrene. This indicates accumulation of the PAHs in soils, affected by the anthropogenic activity on the meteorological station. The most pronounced differences were revealed for the superficial layer of 0-5 cm. Deeper horizons of soil did not show accumulation of contaminants. Data obtained can be used for organization of further monitoring of contamination of soils and landscapes in Yamal as developing and industrial region.
Go to article

Authors and Affiliations

Evgeny Abakumov
Georgy Shamilishviliy
Andrey Yurtaev
Download PDF Download RIS Download Bibtex

Abstract

Humic acids, isolated from selected soils of Grønfjorden area (Spitsbergen) were investigated in terms of molecular composition and resistance of decomposition. The degree of soils organic matter stabilization has been assessed with the use of modern instrumental methods (nuclear magnetic resonance spectroscopy (CP/MAS 13C-NMR). Analysis of the humic acids showed that aromatic compounds prevail in the organic matter formed in cryoconites, located on the glaciers surfaces. The predominance of aliphatic fragments is revealed in the soils in tidal zone that form on the coastal terrace. This could be caused by sedimentation of fresh organic matter exhibiting low decomposition stage due to the harsh climate and processes of hydrogenation in the humic acids, destruction of the C-C bonds and formation of chains with a high hydrogen content. These processes result in formation of aliphatic fragments in the humic acids. In general, soils of the studied region characterizes by low stabilized soil organic matter which is indicated by low aromaticity of the HAs.

Go to article

Authors and Affiliations

Vyacheslav Polyakov
Elya Zazovskaya
Evgeny Abakumov
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

In the Central Caucasus region, the intense process of deglaciation is identified as caused by cryoconite formation and accumulation. The fine earth materials were collected on the surfaces of Skhelda and Garabashi glaciers as well as from zonal soils of Baksan Gorge and were studied in terms of chemical, particle-size, and micromorpholo-gical features. Supraglacial sediments are located at the glacial drift area of material and, thus, due to transfer of these sediments to the foothill area, their fine earth material can affect micromorphological and chemical characteristics of adjacent zonal soils. Thin sections of mineral and organo-mineral micromonoliths were analyzed by classic micromorphological methods. Data obtained showed that the weathering rates of cryoconite and soil minerals are different. The cryoconite material on the debris-covered Skhelda Glacier originated from local massive crystalline rocks and moraines, while for Garabashi Glacier the volcanic origin of cryoconite is more typical. Soils of Baksan Gorge are characterized by more developed microfabric and porous media, but their mineralogical composition is essentially inherited from sediments of glacial and periglacial soils. These new data could be useful for understanding the process of evolution of the mineral matrix of cryoconite to the soil matrix formed at the foot of the mountain.
Go to article

Bibliography


Aleynikova A.M. 2008. Periglacial landscapes of the Mt. Elbrus region as a zone of catastrophic debris flow formation. Selevye potoki: katastrofy, risk, prognoz, zashchita: 33–36 (in Russian).
Aleinikova A.M., Gaivoron T.D., Marsheva N.V. and Mainasheva G.M. 2020. Risk analysis of mudflows in the Central Caucasus. IOP Conference Series: Earth and Environmental Science 579: 012098.
Amato P., Joly M., Besaury L., Oudart A., Taib N., Mone A.I., Deguillaume L., Delort A.-M. and Debroas D. 2017. Active microorganisms thrive among extremely diverse communities in cloud water. PLoS ONE 12: e0182869.
Anesio A.M., Hodson A.J., Fritz A., Psenner R. and Sattler B. 2009. High microbial activity on glaciers: importance to the global carbon cycle. Global Change Biology 15: 955–960.
Antony R., Mahalinganathan K., Thamban M. and Nair S. 2011. Organic carbon in Antarctic snow: spatial trends and possible sources. Environmental Science and Technology 45: 9944–9950. Bagshaw E.A., Tranter M., Fountain A.G., Welch K.A., Basagic H. and Lyons W.B. 2007. The biogeochemical evolution of cryoconite holes on Canada Glacier, Taylor Valley, Antarctica. Journal of Geophysical Research-Biogeosciences 112: G04S35.
Bagshaw E.A., Tranter M., Fountain A.G., Welch K., Hassan J. Basagic H.J. and Berry W.L. 2013. Do cryoconite holes have the potential to be significant sources of C, N, and P to downstream depauperate ecosystems of Taylor Valley, Antarctica? Arctic, Antarctic, and Alpine Research 45: 440–454.
Ball B.A., Barrett J.E., Gooseff M.N., Virginia R.A. and Wall D.H. 2011. Implications of meltwater pulse events for soil biology and biogeochemical cycling in a polar desert. Polar Research 30: 14555.
Bowman G.M. and Hutka J. 2002. Particle size analysis. In: McKenzie N., Coughlan K., Cresswell H. (eds.) Soil Physical Measurement and Interpretation for Land Evaluation. CSIRO Publishing, Victoria: 224–239.
Castaldini M., Mirabella A., Sartori G., Fabiani A., Santomassimo F. and Miclaus N. 2002. Soil development and microbial community along an altitudinal transect in Trentino mountains. Developments in Soil Science 28: 217–228.
Cook J., Edwards A., Takeuchi N. and Irvine-Fynn T. 2016. Cryoconite: the dark biological secret of the cryosphere. Progress in Physical Geography 40: 66–111.
Egli M., Mirabella A. and Sartori G. 2008. The role of climate and vegetation in weathering and clay mineral formation in late Quaternary soils of the Swiss and Italian Alps. Geomorphology 102: 307–324.
FAO 2006. Guidelines for Soil Description. 4th edition. FAO, Rome.
Fountain A.G., Lyons, W.B., Burkins M.B., Dana G.L., Doran P.T., Lewis K.J., McKnight D.M., Moorhead D.L., Parsons A.N., Priscu J.C. and Wall, D.H. 1999. Physical controls on the Taylor Valley ecosystem, Antarctica. Bioscience 49: 961–971.
Foreman C.M., Sattler B., Mikucki J.A., Porazinska D.L. and Priscu J.C. 2007. Metabolic activity and diversity of cryoconites in the Taylor Valley, Antarctica. Journal of Geophysical Research: Biogeosciences 112: G04S32.
Fortner S.K. and Lyons W.B. 2018. Dissolved trace and minor elements in cryoconite holes and supraglacial streams, Canada Glacier, Antarctica. Frontiers in Earth Science 6: 31.
Franzluebbers A.J. 2005. Organic residues, decomposition. In: Hillel D. (Ed). Encyclopedia of Soils in the Environment, Elsevier, Amsterdam: 112–188.
Gagarina E.I. 2004. Micromorphological method of soil investigation, St. Petersburg University Publishing, Saint Petersburg (in Russian).
Gerasimova M.I., Kovda I.V., Lebedeva M.P. and Tursina T.V. 2011. Micromorphological terms: the state of the art in soil microfabric research. Eurasian Soil Science 44: 804–817.
Glazovskaya M.A. 2005a. Subareal cover loams and soils of the inner Tyan-Shan ridges Mnogolikaya geografiya. Razvite idej Innokentiya Petrovicha Gerasimova (k 100-letiyu so dnya rozhdeniya): 132–162 (in Russian).
Glazovskaya M.A. 2005b. On the problem of the relative age of subaerial mountain meadow and mountain forest soils of Tien Shan. Eurasian Soil Science 38: 1265–1276.
Gooseff M.N., McKnight D.M., Runkel R.L. and Duff J.H. 2004. Denitrification and hydrologic transient storage in a glacial meltwater stream, McMurdo Dry Valleys, Antarctica. Limnological Oceanography 49: 1884–1895.
Gurbanov A.G., Gazeev V.M., Bogatikov O.A., Dokuchaev A.Y., Naumov V.B. and Shevchenko A. V. 2004. Elbrus active Volcano and its geological history. Russian Journal of Earth Sciences 6: 257–277.
Hodson A., Anesio A., Tranter M., Fountain A., Osborn M., Priscu J., Layborn-Parry J. and Sattler B. 2008. Glacial ecosystems. Ecological monographs 78: 41–67.
Jenkinson D.S. and Powlson D.S. 1976. The effects of biocidal treatments on metabolism in soil—V. A method for measuring soil biomass. Soil biology and Biochemistry 8: 209–213.
Kaczorek D. and Sommer M. 2003. Micromorphology, chemistry, and mineralogy of bogiron ores from Poland. Catena 54: 393–402.
Kalińska-Nartisa E., Lamsters K., Karuss J., Krievans M., Recs A. and Meija R. 2017. Fine-grained quartz from cryoconite holes of the Russell Glacier, southwest Greenland – A scanning electron microscopy study. Baltica 30: 63–73.
Kalińska E., Lamsters K., Karuss J., Krievans M., Recs A. and Jeskins J. 2022. Does glacial environment produce glacial mineral grains? Pro-and supra-glacial Icelandic sediments in microtextural study. Quaternary International 617: 101–111.
Konistsev V. and Rogov V. 1977. Micromorphology of cryogenic soils. Eurasian Soil Science 2: 119–125.
Kotlyakov V.M., Chernova L.P., Muraviev A.Y., Khromova T.E. and Zverkova N.M. 2017. Changes of mountain glaciers in the Southern and Northern Hemispheres over the past 160 years. Ice and Snow 57: 453–467.
Kubiëna W.L. 1938. Micropedology. Ames, Iowa: Collegiate Press.
Kubiëna W.L. 1970. Micromorphological features of Soil geography. New Jersey: Rutgers University Press.
Langford H., Hodson A., Banwart S. and Boggild C. 2010. The microstructure and biogeochemistry of Arctic cryoconite granules. Annals of Glaciology 51: 87–94.
Lokas E., Zaborska A., Kolicka M., Rozycki M. and Zawierucha K. 2016. Accumulation of atmospheric radionuclides and heavy metals in cryoconite holes on an Arctic glacier. Chemosphere 160: 162–172.
Maksimova E. and Abakumov E. 2017. Micromorphological characteristics of sandy forest soils recently impacted by wildfires in Russia. Solid Earth 8: 553–560.
Marchenko P., Gedueva M. and Dzhappuev D. 2017. Actual and potential exposure to mudflow processes of the upper reaches of the Baksan river. Izvestiya Kabardino-Balkarskogo Nauchnogo Centra RAN 3: 33–43 (in Russian).
Mazurek R., Kowalska J., Gasiorek M. and Setlak M. 2016. Micromorphological and physico- chemical analyses of cultural layers in the urban soil of a medieval city – A case study from Krakow, Poland. Catena 141: 73–84.
Nordenskjold A.E. 1875. Cryoconite found 1870, July 19th–25th, on the inland ice, east of Auleitsivik Fjord, Disco Bay, Greenland. Geological Magazine 2: 157–162.
Nosenko G.A., Khromova T.E., Rototaeva O.V. and Shakhgedanova M.V. 2013. Glacier reaction to temperature and precipitation change in Central Caucasus, 2001–2010. Ice and Snow 53: 26–33 (in Russian).
Orlov D.S. 1985. Soil Chemistry: A Textbook. Moscow State University, Moscow (in Russian).
Pengerud A., Dignac M.-F., Certini G., Strand L.T., Forte C. and Rasse D.P. 2017. Soil organic matter molecular composition and state of decomposition in three locations of the European Arctic. Biogeochemistry 135: 277–292.
Polyakov V., Zazovskaya E. and Abakumov V. 2019. Molecular composition of humic substances isolated from selected soils and cryconite of the Grønfjorden area. Spitsbergen. Polish Polar Research 40: 105–120.
Riebe C.S., Kirchner J.W. and Finkel R.C. 2004. Sharp decrease in long-term chemical weathering rates along an altitudinal transect. Earth and Planetary Science Letters 218: 421–434.
Rogov V. and Konistsev V. 2008. The influence of cryogenesis on clay materials. Cryosphere of Earth 12: 51–59.
Sanyal A., Antony R., Samui G. and Thamban M. 2018. Microbial communities and their potential for degradation of dissolved organic carbon in cryoconite hole environments of Himalaya and Antarctica. Microbiological Research 208: 32–42.
Stibal M., Tranter M., Benning L.G. and Rehak J. 2008. Microbial primary production on an Arctic glacier is insignificant in comparison with allochthonous organic carbon input. Environmental microbiology 10: 2172–2178.
Stoops G. 2003. Guidelines for analysis and description of soil and regolith thin section. Soil Science Society of America. Inc. Madison, Wisconsin, USA.
Stoops G. 2009. Evaluation of Kubiena’s contribution to micropedology. Eurasian Soil Science 42: 693–698.
Stoops G. and Eswaran H. 1986. Soil micromorphology. New York: Van Nostrands Reinhold Company.
Solomina O.N., Savoskyl O.S. and Cherkinsky A.E. 1994. Glacier variation, mudflow activity and landscape development in the Aksay Valley (Tien Shan) during the late Holocene. Holocene 4: 25–31.
Świstowiak M., Mroczek P. and Bednarek R. 2016. Luvisols or Cambisols? Micromorphological study of soil truncation in young morainic landscapes – Case study: Brodnica and Chełmno Lake Regions (North Poland.) Catena 137: 583–595.
Takeuchi N. 2002. Optical characteristics of cryoconite (surface dust) on glaciers: the relationship between light absorbency and the property of organic matter contained in the cryoconite. Annals of Glaciology 34: 409–414.
Takeuchi N., Koshima S. and Seko K. 2001. Structure, formation, and darkening process of albedo- reducing material (cryoconite) on a Himalayan glacier: a granular algal mat growing on the glacier. Arctic, Antarctic, and Alpine Research 33: 115–122.
Takeuchi N., Nishiyama H. and Li Z. 2010. Structure and formation process of cryoconite granules on Ürümqi glacier No. 1, Tien Shan, China. Annals of Glaciology 51: 9–14.
Walkely A. 1947. A critical examination of a rapid method for determining organic carbon in soils: Effect of variations in digestion conditions and of organic soil constituents. Soil Science 63: 251–264.
Weisleitner K., Perras A.K., Unterberger S.H., Moissl-Eichinger C., Andersen D.T. and Sattler B. 2020. Cryoconite hole location in East-Antarctic Untersee Oasis shapes physical and biological diversity. Frontiers in Microbiology 11: 1165.
Wientjes I.G.M., Van De Wal R.S.W., Reichart G.J., Sluijs A. and Oerlemans J. 2011. Dust from the dark region in the western ablation zone of the Greenland ice sheet. The Cryosphere 5: 589– 601.
WRB. 2015. World Reference Base for Soil Resources 2014, update 2015. International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106. FAO, Rome.
Zawierucha K., Baccolo G., Di Mauro B., Nawrot A., Szczuciński W. and Kalińska E. 2019. Micromorphological features of mineral matter from cryoconite holes on Arctic (Svalbard) and alpine (the Alps, the Caucasus) glaciers. Polar Science 22: 100482.
Go to article

Authors and Affiliations

Evgeny Abakumov
1
ORCID: ORCID
Rustam Tembotov
2
Ivan Kushnov
1
Vyacheslav Polyakov
1

  1. Saint-Petersburg State University, 7/9 University Embankment, St. Petersburg, 199034, Russia
  2. Tembotov Institute of Ecology of Mountain Territories, Russian Academy of Sciences, 37a, I. Armand Street, Nalchik, 360051, Russia
Download PDF Download RIS Download Bibtex

Abstract

Here we investigate the microbiomes of the soil samples from the Yamal Peninsula (the surroundings of Salekhard city, Russian Federation) using a high-throughput sequencing approach. The main goal was to investigate the impact of mining on soils within the following regeneration, both during the reclamation practice and natural self-growth. Several quarries were studied, engaged in sand, clay and chromatic ores mining. The taxonomic analysis of the soil microbiomes revealed 50 bacterial and archaeal phyla; among the dominant phyla were: Proteobacteria, Actinobacteria, Acidobacteria, Chroloflexi, Gemmatimonadetes, Verrucomicrobia, Planctomycetes, Bacteroidetes, AD3, and Nitrospirae. Compared to the typical tundra soil, which was chosen as a control, the disturbed soils had increased biodiversity and total counts for soil bacteria, archaea, and fungi, especially in the cryosolic horizon. The different mining strategies caused significantly different transformations of soil microbiomes, which was less pronounced for self-growth compared to reclaimed quarries. This isolation of the reclaimed quarry was mainly associated with the increase of the amount of acidobacteria (fam. Koribacteraceae and Acidobacteriaceae and order Ellin6513), some proteobacterial taxa (fam. Syntrophobacteraceae), and Chloroflexi (fam. Thermogemmatisporaceae). The study also revealed bacteria, which tend to be specific for marine tundra environments: gemmatimonadetes from the order N1423WL and Chloroflexi bacteria from the order Gitt-GS-136.

Go to article

Authors and Affiliations

Elizaveta Pershina
Ekaterina Ivanova
Anastasia Kimeklis
Alexey Zverev
Arina Kichko
Tatiana Aksenova
Evgeny Andronov
Evgeny Abakumov
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

The article discusses the valuation of ecosystem services in connection with the economic activity of the Russian Federation in the Arctic zone. It also considers the categories of ecosystem services in general and the assessment of ecosystem services in the Arctic in particular. The article also considers types of negative impacts on the Arctic ecosystems, their assessment, and investment risks existing in ecosystem services. It is shown that the application of the methodology and ecosystem services contributes to the adequate assessment and creation of a hierarchical classification of “usefulness” and “benefits” for society derived from the existence, use, and non-use of ecosystems. The concept of Arctic ecosystem services consists of three components: identification, monetisation, and ecological risk assessment. Identification, classification, and initial assessment, mainly at the qualitative level, allow us to determine and classify services for further improvement of life quality and regulation of socio-economic effects of environmental changes. Quantitative assessment is related to the identification of the degree of ecosystem service amenability. The example of the Arctic ecosystems shows that the possibility to assess and the accuracy of the assessment can be quite different and largely depends on the type of service. The analysis of possible ecosystem services and their relationship with the quality of life in the Russian Arctic indicates significant investment risks.
Go to article

Bibliography


ABAKUMOV E., MORGUN E., PECHKIN A., POLYAKOV V. 2020. Abandoned agricultural soils from the central part of the Yamal region of Russia: Morphology, diversity, and chemical properties. Open Agriculture. Vol. 5. No. 1 p. 94–106. DOI 10.1515/opag-2020-0010.
ALCAMO J., BENNETT E.M., HASSAN R. (eds.) 2003. Ecosystems and human well-being: A framework for assessment. Ser. Millennium Ecosystem Assessment. Washington D.C., USA. Island Press. ISBN 9781559634021 pp. 212.
BERKES F. 2002. Cross-scale institutional linkages: Perspectives from the bottom up. In: The drama of the commons. Eds. E. Ostrom, T. Dietz, N. Dolak, P.C. Stern, S. Stonich, E.U. Weber. Washington, DC, USA. National Academy Press, p. 293–322.
BHATTARI U. 2017. Impacts of climate change on biodiversity and ecosystem services: Direction for future research. Hydro Nepal Journal of Water Energy and Environment. Vol. 20 p. 41–48. DOI 10.3126/hn.v20i0.16488.
BOBYLEV S.N., ZAKHAROV V.M. 2009. Ekosistemnyye uslugi i ekonomika [Ecosystem services and the economy]. Moskva, Russia. OOO «Tipografiya LEVKO», Institut ustoychivogo razvitiya/Tsentr ekologicheskoy politiki Rossii pp. 72.
COSTANZA R. 1992. Toward an operational definition of ecosystem health. In: Ecosystem health. New Goals for Environmental Management. Eds. R. Costanza, B.G. Norton, B.D. Haskell. Washington D.C. Island Press. p. 239–256.
COSTANZA R., D’ARGE R., DE GROOT R., FARBER S., GRASSO M., HANNON B., ... VAN DEN BELT M. 1997. The value of the world’s ecosystem services and natural capital. Nature. Vol. 387 p. 253–260. DOI 10.1038/387253a0.
DIETZ T. 2003. What is a good decision? Human Ecology Review. Vol. 10 p. 60–67.
DIETZ T., STERN P.C. 1998. Science, values and biodiversity. BioScience. Vol. 48 p. 441–444.
DYAKONOV K.N., DONCHEVA A.V. 2002. Ekologicheskoye proyektirova- niye i ekspertiza [Environmental design and expertise]. Moscow, Russia. Aspect-Press. ISBN 5-7567-0177-X pp. 384.
Federal Law of 24.07.2009 N 209-FZ. On hunting and on the conservation of hunting resources and on amending certain legislative acts of the Russian Federation pp. 57.
GOMES E., INÁCIO M., BOGDZEVIČ K., KALINAUSKAS M., KARNAUSKAITĖ D., PEREIRA P. 2021. Future land-use changes and its impacts on terrestrial ecosystem services: A review. Science of The Total Environment. Vol. 781, 146716. DOI 10.1016/j.scitotenv.2021.146716.
HAINES-YOUNG R., POTSCHIN M.B. 2017. Common International Classification of Ecosystem Services (CICES) V5.1 and Guidance on the application of the revised structure [online]. [Access 10.05.2021]. Available at: https://cices.eu/content/uploads/sites/8/ 2018/01/Guidance-V51-01012018.pdf
HEMMATI M. 2001. Multi-stakeholder processes: A methodological framework. Executive summary. Principles step-by-step guide [online]. London. UNED Forum pp. 28. [Access 13.04.2021]. Available at: https://www.pgexchange.org/msp/MSP%20Report% 20Exec%20Summary%20April%202001.pdf
JOUQUET P., TRAORÉ S., CHOOSAI C, HARTMANN C, BIGNELL D. 2011. Influence of termites on ecosystem functioning. Ecosystem services provided by termites. European Journal of Soil Biology. Vol. 4 p. 215–222. DOI 10.1016/j.ejsobi.2011.05.005.
KART AKTAS N., YILDIZ DONMEZ N. 2019. Effects of urbanisation and human activities on basin ecosystem: Sapanca Lake basin. Journal of Environmental Protection and Ecology. Vol. 20. No. 1 p. 102– 122.
KEESSTRA S., NUNES J., NOVARA A., FINGER D., AVELAR D., KALANTARI Z., CERDÀ A. 2018. The superior effect of nature based solutions in land management for enhancing ecosystem services. Science of The Total Environment. Vol. 610–611 p. 997–1009. DOI 10.1016/j.scitotenv.2017.08.077.
LUKIN V.V., KLOKOV V.D., POMELOV V.N. (eds.) 2002. Sistema dogovora ob Antarctice. Pravovye kommentarii [System the Antarctic Treaty. The legal comments]. St. Petersburg. Hydrometeoizdat pp. 400.
MÄLER K.-G., GREN I., FOLKE C. 1994. Multiple use of environmental resources: A household production function approach to valuing natural capital. In Investing in natural capital. Eds. A. Jansson, M. Hammar, C. Folke, R. Costanza., Washington, DC. Island Press p. 234–249.
MARTIN S.L., BALANCE L.T., GROVES T. 2016. An ecosystem services perspective for the oceanic eastern tropical Pacific: Commercial fisheries, carbon storage, recreational fishing, and biodiversity. Frontiers in Marine Science. Vol. 50 No. 3. DOI 10.3389/fmars.2016.00050.
MELNIKOV V.P., GENNADINIK V.B., BROUSHKOV A.V. 2013. Aspects of cryosophy: cryodiversity in nature. Earth Cryosphere. Vol. 17. No. 2 p. 3–11.
Millennium Ecosystem Assessment 2005. Ecosystems and human well- being. Synthesis [online]. Washington D.C., USA. Island Press. ISBN 1-59726-040-1 pp. 160. [Access 10.05.2021]. Available at: http://www.millenniumassessment.org/documents/document.356.aspx.pdf
NYKA M. 2017. The concept of ecosystem services in regulation of human activity at sea. Maritime Law. Vol. 33 p. 87–104.
PASCUAL U., MURADIAN R., BRANDER L., GÓMEZ-BAGGETHUN E., MARTÍN- LÓPEZ B., VERMA M. ..., POLASKY S. 2010. The economics of valuing ecosystem services and biodiversity. In: The economics of ecosystems and biodiversity: ecological and economic founda- tion. Ed. P. Kumar. London, UK. Routledge p. 183–256.
PEREIRA P., BOGUNOVIC I., ZHAO W., BARCELO D. 2021. Short-term effect of wildfires and prescribed fires on ecosystem services. Current Opinion in Environmental Science and Health. Vol. 22, 100266. DOI 10.1016/j.coesh.2021.100266.
PETER H.U., BRAUN C., MUSTAFA O., PFIFER S. 2008. Risk assessment for the Fildes Peninsula and Ardley Island, and development of management plans for their designation as specially protected or specially managed areas. Ser. Texte. Nr. 20. Jena, Germany. Federal Environment Agency. ISSN 1862-4804 pp. 508.
PETKOVA E., MAURER C., HENNINGER N., FRANCES I. 2002. Closing the gap: Information, participation, and justice in decision making for the environment. Washington DC, USA. World Resources Institute. ISBN 978-1569735251 pp. 153.
Regulation (EU) 2018/848 of the European Parliament and of the Council of 30 May 2018 on organic production and labelling of organic products and repealing Council Regulation (EC) No 834/ 2007. OJL 150, 14 June 2018.
ROLANDO J.L., TURIN C., RAMÍREZ D.A., MARES V., MONERRIS J., QUIROZ R. 2017. Key ecosystem services and ecological intensification of agriculture in the tropical high-Andean Puna as affected by land- use and climate changes. Agriculture, Ecosystems and Environ- ment. Vol. 236 p. 221–233. DOI 10.1016/j.agee.2016.12.010.
ROSENBERG A.G. 2014. Otsenki ekosistemnykh uslug dlya territorii Samarskoy oblasti [Assessment of ecosystem services for the territory of the Samara region]. Povolzhskiy ekologicheskiy zhurnal. Vol. 1 p. 139–145.
Roshydromet 2008. Assessment report on climate change and its consequences in Russian Federation. General summary. Moscow. Federal Service for Hydrometeorology and Environmental Monitoring. ISBN 978-5-904-206-96-03 pp. 24.
Rospotrebnadzor 2010. Sanitarno-epidemiologicheskiye trebovaniya k organizatsiyam, osushchestvlyayushchim meditsinskuyu deya- tel’nost’ Sanitarno-epidemiologicheskiye pravila i normativy SanPiN 2.1.3.2630–10. The Decree from May, 18th, 2010 N 58 On approval SanPiN 2.1.3.2630-10 “Sanitary-epidemiological requirements for organizations engaged in medical activities” (with changes on 10 June 2016). Moskva. Federal’nyy tsentr gigiyeny i epidemiologii Rospotrebnadzora. ISBN 978-5-7508- 0925-7 pp. 255.
Rosvodresursy 2014. Skhema kompleksnogo ispol’zovaniya i okhrany vodnykh ob"yektov basseyna r. Pyasina [Scheme of complex use and protection of water objects of the basin of the Pyasina] [online]. Approved by the order of the EBVU dated June 20, No. 96. Moskva. Federalnoye agentsvo vodnykh resursov. [Access 03.02.2021]. Available at: http://skiovo.enbvu.ru/ SANTAREM F., SAAREN J., BRITO J.C. 2019.Mapping and analyzing cultural ecosystem services in conflict areas. Ecological Indicators. Vol. 110, 105943. DOI 10.1016/j.ecolind.2019.105943.
SEAA 2021. System of Environmental-Economic Accounting – Eco- system Accounting. [online]. United Nations pp. 371. [Access 29.09.2021]. Available at: https://seea.un.org/ecosystem-accounting
STERN P.C., FINEBERG H. (eds.) 1996. Understanding risk: Informing decisions in a democratic society. Eds. P.C. Stern, H. Fineberg. Washington, DC. National Academy Press, ISBN 978- 0309089562 pp. 264.
STOLBOVOI V., MCCALLUM I. (eds.) 2002. Land resources of Russia [CD- ROM]. Laxenburg, Austria. International Institute for Applied Systems Analysis and the Russian Academy of Science.
SYLLA M., LASOTA T., SZEWRAŃSKI S. 2019. Valuing environmental amenities in peri-urban areas: Evidence from Poland. Sustain- ability. Vol. 11(3), 570. DOI 10.3390/su11030570.
TEEB 2008. The economics of ecosystems and biodiversity. An interim report. European Communities. The Economics of Ecosystems and Biodiversity. ISBN-13 978-92-79-08960-2 pp. 64. TELEGA I. 2019. Ecosystem services in competing land use model with infrastructure effect. Central European Journal of Economic Modelling and Econometrics. Vol. 11. No. 2 p. 73–92.
The Madrid Protocol 1991. Protocol on environmental protection to the Antarctic Treaty [online]. Madrid pp. 61. [Access 10.04.2021]. Available at: https://documents.ats.aq/recatt/Att006_e.pdf
TIKHONOVA T.V. 2017. Evaluation of the capacity of ecosystems in the subarctic territories of the Komi Republic. Proceedings of the Komi scientific center of UB RAS. Vol. 1. No. 17, 117.
Tromsø Declaration on the occasion of the Sixth Ministerial Meeting of the Arctic Council. The 29th of April, 2009, Tromsø, Norway [online]. [Access 10.04.20221]. Available at: http://library.arctic- portal.org/1253/
VERBITSKY J. 2018. Ecosystem services and Antarctica: The time has come? Ecosystem Services. Vol. 29. Part B p. 381–394. DOI 10.1016/j.ecoser.2017.10.015.
WWF-Russia 2014. Protected areas in the Russian Arctic: Current state and prospects for development. Moscow. World Wide Fund for Nature pp. 239.
YANG S., ZHAO W., LIU Y., CHERUBINI F., FU B., PEREIRA P. 2020. Prioritizing sustainable development goals and linking them to ecosystem services: A global expert’s knowledge evaluation. Geography and Sustainability. Vol. 1. No. 4 p. 321–330. DOI 10.1016/j.geosus.2020.09.004.
ZUBRZYCKI S., KUTZBACH L., PFEIFFER E-M. 2014. Permafrost-affected soils and their carbon pools with a focus on the Russian Arctic. Solid Earth. Vol. 5 p. 595–609. DOI 10.5194/se-5-595-2014.
Go to article

Authors and Affiliations

Evgeny Abakumov
1
ORCID: ORCID
Azamat Suleymanov
1 2
ORCID: ORCID
Yuriy Guzov
1
ORCID: ORCID
Victor Titov
1
ORCID: ORCID
Angelina Vashuk
1
ORCID: ORCID
Elena Shestakova
1
ORCID: ORCID
Irina Fedorova
1
ORCID: ORCID

  1. Saint Petersburg State University, 16 line 29 Vasilyevskiy Island, 199178, Saint-Petersburg, Russia
  2. Ufa State Petroleum Technological University, Ufa, Russia

This page uses 'cookies'. Learn more