Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 1
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

In the current work the calculations of the reaction cross-section of total fusion σ fus, the fusion barrier distribution D fus, and the probability P fus were achieved for systems ⁶He+⁶⁴Zn, ⁸B+⁵⁸Ni and ⁸He+¹⁹⁷Au which involve halo nuclei by using a semiclassical approach. The semiclassical and quantum mechanics treatments comprise the approximation of WKB for describing the relative motion among projectile nuclei and target nuclei, and the method of CDCC (Continuum Discretized Coupled Channel) for describing the intrinsic motion for the projectile and target nuclei. Our semiclassical calculations yielded findings that were compared to obtainable experimental data as well as quantum mechanics calculations. For fusion cross-sections σ fus below and above the Coulomb barrier Vb, the quantum mechanics coupled channels are very similar, according to the experimental results.
Go to article

Bibliography

  1.  J. Badziak, “Laser nuclear fusion: current status, challenges and prospect,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 60, no. 4, pp. 729–738, 2012, doi: 10.2478/v10175-012-0084-8.
  2.  K. Hagino and N. Takigawa, “Subbarrier fusion reactions and many-particle quantum tunneling,” Prog. Theor. Phys., vol. 128, no. 6, pp. 1061–1106, 2012, doi: 10.1143/ptp.128.1061.
  3.  M. Dasgupta, D.J. Hinde, N. Rowley, and A.M. Stefanini, “Measuring barriers to fusion,” Annu. Rev. Nucl. Part. Sci., vol. 48, no. 1, pp. 401–461, 1998, doi: 10.1146/annurev.nucl.48.1.401.
  4.  D.J. Griffiths and D.F. Schroeter, Introduction to quantum mechanics, Cambridge University Press, 2018.
  5.  L.F. Canto, P.R.S. Gomes, R. Donangelo, and M.S. Hussein, “Fusion and breakup of weakly bound nuclei,” Phys. Rep., vol. 424, no. 1–2, pp. 1–111, 2006, doi: 10.1016/j.physrep.2005.10.006.
  6.  A. Diaz-Torres and M. Boselli “Low-energy fusion dynamics of weakly bound nuclei,” EPJ Web of Conferences, vol. 117, p. 08002, 2016, doi: 10.1051/epjconf/201611708002.
  7.  A. Diaz-Torres, I.J. Thompson, and C. Beck, “How does breakup influence the total fusion of 6, 7Li at the Coulomb barrier?,” Phys. Rev. C, vol. 68, no. 4, pp. 44607, 2003, doi: 10.1103/physrevc.68.044607.
  8.  L.R. Gasques, D.J. Hinde, M. Dasgupta, A. Mukherjee, and R.G. Thomas, “Suppression of complete fusion due to breakup in the reactions B10,  11 + Bi209,” Phys. Rev. C, vol.79, no.3, pp. 34605, 2009, doi: 10.1103/physrevc.79.034605.
  9.  B. Wang, W.J. Zhao, A. Diaz-Torres, E.G. Zhao, and S.G. Zhou, “Systematic study of suppression of complete fusion in reactions involving weakly bound nuclei at energies above the Coulomb barrier,” Phys. Rev. C, vol. 93, no. 1, pp. 14615, 2016, doi: 10.1103/ physrevc.93.014615.
  10.  M.E. Brandan and G.R. Satchler, “The interaction between light heavy-ions and what it tells us,” Phys. Rep., vol. 285, no. 4–5, pp. 143–243, 1997, doi: 10.1016/s0370-1573(96)00048-8.
  11.  P.R. Silveira Gomes, J.L. Rios, J.R. Borges, and D.R. Otomar, “Fusion, breakup and scattering of weakly bound nuclei at near barrier energies,” Open Nucl. Part. Phys. J., vol. 6, no. 1, 2013, doi: 10.2174/1874415X01306010010.
  12.  P.R.S. Gomes et al., “Break-up and scattering of weakly bound nuclei,” Revista Mexicana De Física, vol. 52, pp. 23–29, 2006 [Online]. Available: https://www.researchgate.net/publication/242365995_Fusion_break-up_and_scattering_of_weakly_bound_nuclei.
  13.  F.A. Majeed and Y.A. Abdul-Hussien, “Semiclassical treatment of fusion and breakup processes of 6, 8He halo nuclei,” J. Theor. Appl. Phys., vol. 10, no. 2, pp. 107–112, 2016, doi: 10.1007/s40094-016-0207-y.
  14.  F.A. Majeed, “The role of the breakup channel on the fusion reaction of light and weakly bound nuclei,” Int. J. Nucl. Energ. Sci. Tech., vol. 11, no. 3, pp. 218–228, 2017, doi: 10.1504/ijnest.2017.088068.
  15.  F.A. Majeed, R.Sh. Hamodi, and F.M. Hussian, “Effect of coupled channels on semiclassical and quantum mechanical calculations for heavy ion fusion reactions,” J. Comput.Theor. Nanosci., vol. 14, no. 5, pp. 2242–2247, 2017, doi: 10.1166/jctn.2017.6816.
  16.  F.A. Majeed, K.H.H. AlAteah and M.S. Mehemed, “Coupled channel calculations using semi-classical and quantum mechanical approaches for light and medium mass systems,” Int. J. Energ. Sci. Tech, vol. 11, no. 7, pp. 291–308, 2018, doi: 10.1504/IJNEST.2017.090652.
  17.  F.A. Majeed and F.A. Mahdi, “Quantum Mechanical Calculations of a Fusion Reaction for Some Selected Halo Systems,” Ukr. J. Phys., vol. 64, no. 1, pp. 11, 2019, doi: 10.15407/ujpe64.1.11.
  18.  F.A. Majeed, Y.A. Abdul-Hussien, and F.M. Hussian. “Fusion Reaction of Weakly Bound Nuclei,” in Nuclear Fusion-One Noble Goal and a Variety of Scientific and Technological Challenges, IntechOpen, 2019.
  19.  A.J. Najim, F.A. Majeed, and Kh.H. Al-Attiyah, “Coupled-Channel Calculations for Fusion Cross Section and Fusion Barrier Distribution of 32S+144, 150, 152, 154Sm,” In IOP Conf. Ser.: Mater. Sci. Eng., vol. 571, pp. 012124, 2019, doi: 10.36478/jeasci.2019.10406.10412.
  20.  A.J. Najim, F.A. Majeed and K.H.A. Al-Attiyah, “Description of coupled-channel in Semiclassical treatment of heavy ion fusion reactions,” J. Eng. Appl. Sci., vol. 14, pp. 10406–10412, 2019, doi: 10.1088/1757-899X/571/1/012113.
  21.  H.J. Musa, F.A. Majeed, and A.T. Mohi, “Coupled Channels Calculations of Fusion Reactions for 46Ti+64Ni, 40Ca+194Pt and 40Ar+148Sm Systems,” Iraqi J. Phys., vol. 18, no. 47, pp. 84–90, 2020, doi: 10.30723/ijp.v18i47.604.
  22.  H.J. Musa, F.A. Majeed, and A.T. Mohi. “Improved WKB Approximation for Nuclear Fusion Reactions,” IOP Conf. Ser.: Mater. Sci. Eng., vol. 871, no. 1, pp. 012063, 2020, doi: 10.1088/1757-899x/871/1/012063.
  23.  M.S. Mehemed, S.M. Obaid, and F.A. Majeed, “Coupled channels calculation of fusion reaction for selected medium systems,” Int. J. Nucl. Energy Sci. Technol., vol. 14, no. 2, pp. 165–180, 2020, doi: 10.1504/IJNEST.2020.112162.
  24.  N. Austern, Direct Nuclear Reaction Theory, Wiley, New York. 1970.
  25.  G.R. Satchler, Direct Nuclear Reactions, Oxford University Press, Oxford. 1983.
  26.  W.H.Z. Cardenas et al., “Approximations in fusion and breakup reactions induced by radioactive beams,” Nucl. Phys. A, vol. 703, no. 3–4, pp. 633–648, 2002. doi: 10.1016/s0375-9474(01)01672-4.
  27.  M.S. Hussein, “Theory of the heavy-ion fusion cross section,” Phys. Rev. C, vol. 30, no. 6, pp. 1962, 1984, doi: 10.1103/physrevc.30.1962.
  28.  G.R. Satchler, “Absorption cross sections and the use of complex potentials in coupled-channels models,” Phys. Rev. C, vol. 32, no. 6, pp. 2203, 1985, doi: 10.1103/PhysRevC.32.2203.
  29.  N. Rowley, G.R. Satchler, and P.H. Stelson, “On the “distribution of barriers” interpretation of heavy-ion fusion,” Phys. Lett. B, vol. 254, no. 1–2, pp. 25–29, 1991, doi: 10.1016/0370-2693(91)90389-8.
  30.  H. Timmers, D. Ackermann, S. Beghini, L.Corradi, J.H. He, G. Montagnoli, F. Scarlassara, A.M. Stefanini, N. Rowley, “A case study of collectivity, transfer and fusion enhancement,” Nucl. Phys. A, vol. 633, no. 3, pp. 421–445, 1998, doi: 10.1016/s0375-9474(98)00121-3.
  31.  V. Scuderi et al., “Fusion and direct reactions for the system 6He+64Zn at and below the coulomb barrier,” Phys. Rev. C, vol. 84, no. 6, pp. 064604, 2011, doi: 10.1103/physrevc.84.064604.
  32.  P. Moller, J.R. Nix, W.D. Myers, and W.J. Swiatecki, “Nuclear properties for astrophysical and radioactive-ionbeam applications,” At. Data Nucl. Data Tables, vol. 59, pp. 131–343, 1995, doi: 10.1006/adnd.1997.0746.
  33.  K. Hagino, A. Vitturi, C.H. Dasso, and S.M. Lenzi, “Role of breakup processes in fusion enhancement of drip-line nuclei at energies below the Coulomb barrier,” Phys. Rev. C, vol. 61, no. 3, pp. 0376, 2000, doi: 10.1103/PhysRevC.61.037602.
Go to article

Authors and Affiliations

Maryam H. Abd Madhi
1
Fouad A. Majeed
1
ORCID: ORCID

  1. Department of Physics, College of Education for Pure Sciences, University of Babylon, Babylon, Iraq

This page uses 'cookies'. Learn more