Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Sedimentation tanks have a vital role in the overall efficiency of solid particles removal in treatment units. Therefore, an in-depth study these tanks is necessary to ensure high quality of water and increasing the system efficiency. In this work, an experimental rectangular sedimentation tank has been operated with and without a baffle to investigate the system behaviour and effectiveness for the reduction of solid particles. Turbid water was prepared using clay, which was collected from the water treatment plant of Al Maqal Port (Iraq), mixed with clear water in a plastic supply tank. Raw and outflow samples were tested against turbidity after plotting a calibration curve between inflow suspended solids versus their corresponding turbidity values. The key objective was to assess the impact of different flow rates, particle concentrations, heights and positions of the baffle on the system efficiency. Findings showed that the tank performance was enhanced significantly (p < 0.05) with the use of a baffle placed at a distance of 0.15 of tank length with height equal to 0.2 of tank depth. Higher removal efficiency (91%) was recorded at a lower flow rate (0.015 dm3∙s–1) and higher concentration (1250 mg∙dm–3), as the treatment efficiency enhanced by 34% compared with the operation without a baffle. Placing the baffle in the middle of the sedimentation tank produced the worst results. System efficiency for solids removal reduced with increasing baffle height. Further research is required to evaluate the efficiency of an inclined baffle.
Go to article

Authors and Affiliations

Dina A. Yaseen
1
ORCID: ORCID
Saad Abu-Alhail
1
ORCID: ORCID
Rusul N. Mohammed
2
ORCID: ORCID

  1. University of Basrah, College of Engineering, Department of Civil Engineering, P.O. Box 49, Basra city, 61004, Iraq
  2. University of Basrah, College of Engineering, Department of Chemical Engineering, Basra city, Iraq
Download PDF Download RIS Download Bibtex

Abstract

This study attempts to find a fuzzy logic system for assessing the quality of water in water treatment plants (WTPs) providing water for irrigation purposes in the Basrah Governorate (South of Iraq). Each month, samples are taken in each of six major WTPs to measure electrical conductivity ( EC), and the content of sodium, magnesium and calcium. The calculated value which is the sodium adsorption ratio ( SAR) is plotted with EC on the Richard diagram. SAR and EC values are combined together in a fuzzy inference system (FIS) to find out a quality number called the fuzzy irrigation water quality index number ( FIWQI) which ranges from zero to one. The higher the value of the index, the better water quality. The Richard diagram, which helps to classify irrigation water, is used to adjust FIS components. Results show that the FIWQI for all WTPs changes depending on location and season. It ranges between 0.114–0.170, 0.120–0.190, 0.114–0.170, 0.114–0.202, 0.118–0.500 and 0.46–0.500 for Al-Bradhaia 1, Al-Jubaila 1, Shatt Al-Arab, Garmmah 1, Al-Rebat, and Old Shauaibah WTPs, respectively. The results indicate that WTPs effluent drawn from the Shatt Al-Arab River has poor water quality for irrigation purposes, except for an Old Shauaibah which receives water from another source called a sweet water canal. FIS results are compared with values obtained from the Richard diagram and 96% degree of compatibility between the two methods is attained. This indicates that FIS is an acceptable method for water quality classification.
Go to article

Authors and Affiliations

Ahmed N.A. Hamdan
1
ORCID: ORCID
Zainb A.A. Al Saad
1
ORCID: ORCID
Saad Abu-Alhail
1
ORCID: ORCID

  1. University of Basrah, Engineering College, Civil Engineering Department, Basrah 61004, Iraq

This page uses 'cookies'. Learn more