Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The composition and structural modification of aluminium alloys influence their strength, tribological properties and structural stability. The phase composition of the structure as well as the characteristics of the elementary cell of each identified phase was established by X-ray diffraction, and the main objective was to determine the compositional phases, microstructure and microcomposition of the alloy. Based on the cyclic voltammograms it can be said that on the OCP interval (+1.5 V… –1.1 V), after the breakthrough potential is an intensification of the anodic process by the pronounced increase of the current density, in these conditions the Al-Si alloy has low values which means that it has a better corrosion resistance.
Go to article

Authors and Affiliations

M.G. Minciuna
1 2
ORCID: ORCID
P. Vizureanu
1 2
ORCID: ORCID
B. Jeż
3
ORCID: ORCID
A.V. Sandu
1 2
ORCID: ORCID
M. Nabiałek
3
ORCID: ORCID
D.C. Achitei
1 2
ORCID: ORCID

  1. “Gheorghe Asachi” Technical University of Iasi, Faculty of Materials Science and Engineering, Blvd. Mangeron, No. 51, 700050, Iasi, Romania
  2. Universiti Malaysia Perlis (UniMAP), Centre of Excellence Geopolymer and Green Technology (CEGeoGTech), 01000 Perlis, Malaysia
  3. Czestochowa University of Technology, Faculty of Production Engineering and Materials Technology, Department of Physics, 42-200 Częstochowa, Poland
Download PDF Download RIS Download Bibtex

Abstract

Currently, one of the main challenges of civil engineering and science materials engineers is to develop a sustainable substitute for Ordinary Portland Cement. While the most promising solution is provided by the geopolymerisation technology, most of the studied geopolymers are based on natural raw materials (kaolin). The metakaolin is mainly preferred because of its rapid rate of dissolution in the activator solution, easy control of the Si/Al ratio, and white color. However, its high cost prevents it from being widely used in geopolymer composites or other materials that can become an industrial alternative for Ordinary Portland Cement. Several studies have shown that geopolymers with good performance can also be obtained from secondary raw materials (industrial wastes such as coal ash or slag). This explains why countries with rapidly developing economies are so interested in this technology. These countries have significant amounts of industrial waste and lack a well-developed recycling infrastructure. Therefore, the use of these by-products for geopolymers manufacturing could solve a waste problem while simultaneously lowering virgin raw material consumption. This study evaluates the effect of replacing different amounts of coal ash with sand on the microstructure of sintered geopolymers. Accordingly, scanning electron microscopy and energy dispersive X-ray analysis were involved to highlight the morphological particularities of room-cured and sintered geopolymers.
Go to article

Authors and Affiliations

D.D. Burduhos-Nergis
1
ORCID: ORCID
P. Vizureanu
1 2
ORCID: ORCID
D.C. Achitei
1
ORCID: ORCID
A.V. Sandu
1 3
ORCID: ORCID
D.P. Burduhos-Nergis
1
ORCID: ORCID
M.M.A.B. Abdullah
4 5
ORCID: ORCID

  1. Gheorghe Asachi Technical University of Iasi, Faculty of Materials Science and Engineering, D. Mangeron 41, 700050 Iasi, Romania
  2. Technical Sciences Academy of Romania, Dacia Blvd 26, 030167 Bucharest, Romania
  3. Romanian Inventors Forum, St. P. Movila 3, 700089 Iasi, Romania
  4. Centre of Excellence Geopolymer and Green Technology (CEGeoGTech), Universiti Malaysia Perlis (UniMAP), Arau 02600, Perlis, Malaysia
  5. Universiti Malaysia Perlis (UniMAP), Faculty of Chemical Engineering Technology, Arau 02600, Perlis, Malaysia
Download PDF Download RIS Download Bibtex

Abstract

Production of Ti-based alloys with non-toxic elements give the possibility to control the market of medical applications, using alloys with appropriate properties for human body, contributing to improving the health of the population. Determination of parameters of atomic and magnetic structure of functional biomaterials demonstrating interesting physical phenomena and being promising for medical applications in a wide range of thermodynamic parameters; exploration of the role of cluster aggregation in the formation of physical properties. Paper is about the obtaining of the new titanium system alloys, the determining their characteristics and structure, and obtaining information concerning phase transitions and some mechanical properties. Ti15Mo7ZrxTa (5 wt.%, 10 wt.% and 15 wt.%) alloys developed shows a predominant β phase highlighted by optical microstructure and XRD patterns. A very low young modulus of alloys was obtained (43-51 GPa) which recommends them as very good alloys for orthopedic applications.
Go to article

Authors and Affiliations

I. Baltatu
1
ORCID: ORCID
A.V. Sandu
1 2 3
ORCID: ORCID
M.S. Baltatu
1 2
ORCID: ORCID
M. Benchea
4
ORCID: ORCID
D.C. Achitei
1 2
ORCID: ORCID
F. Ciolacu
5
ORCID: ORCID
M.C. Perju
1 2
ORCID: ORCID
P. Vizureanu
1 2
ORCID: ORCID
L. Benea
6
ORCID: ORCID

  1. “Gheorghe Asachi” Technical University of Iasi, Faculty of Materials Science and Engineering, 41 “D. Mangeron” Street, 700050, Iasi, Romania
  2. University Malaysia Perlis, Centre of Excellence Geopolymer & Green Technology School of Materials Engineering, Kompleks Pengajian Jejawi 2,02600 Arau, Perlis
  3. Romanian Inventors Forum, Str. Sf. P. Movila 3, L11, 700089, Iasi, Romania
  4. “Gheorghe Asachi” Technical University of Iasi, Faculty of Mechanical Engineering, 61-63 “D. Mangeron” Street, 700050, Iasi, Romania
  5. “Gheorghe Asachi” Technical University of Iasi, Department of Natural and Synthetic Polymers, 73 Blvd. D. Mangeron, Iasi, 700050, Romania
  6. Dunărea de Jos University of Galati, Faculty of Engineering, 47 Domneasca St., 800008, Galati, Romania

This page uses 'cookies'. Learn more