Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Nodes' aware-mobility in the Internet of Things (IoTs) stills open defy for researchers, due to the dynamic changing of routing path and networks’ resource limitations. Therefore, in this study a new method is proposed called Mobility Aware - “Routing Protocol for Low power and Lossy Networks” (MARPL), that consists of two phases: in the first phase splitting the entire network into sub areas based on reference nodes with “Time Difference of Arrival” (TDoA) technique. While, the second phase, is about managing mobile nodes (MNs) in RPL according to the sub areas' ID. The Cooja simulator software has been used to implement and assess MA-RPL method performance, according to the data packet metrics (lost packet, packet delivery ratio PDR), latency and nodes' power usage in comparison with two methods: Corona (Co-RPL) and Mobility Enhanced (ME-RPL). The simulation results have been shown that the MA-RPL method consumes less nodes' energy usage, gives less latency with minimum data packet loss in comparison with Co-RPL and MERPL.
Go to article

Authors and Affiliations

Ahmed R. Zarzoor
1

  1. Directorate of Inspection, Ministry of Health, Baghdad, Iraq
Download PDF Download RIS Download Bibtex

Abstract

Already published data for the optical band gap (Eg) of thin films and nanostructured copper zinc tin sulphide (CZTS) have been reviewed and combined. The vacuum (physical) and non-vacuum (chemical) processes are focused in the study for band gap comparison. The results are accumulated for thin films and nanostructured in different tables. It is inferred from the re- view that the nanostructured material has plenty of worth by engineering the band gap for capturing the maximum photons from solar spectrum.

Go to article

Authors and Affiliations

N. Ali
R. Ahmed
A. Bakhtiar-Ul-Haq Shaari

This page uses 'cookies'. Learn more