Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The present work involved an extensive outdoor performance testing program of a solar water heating system that consists of four evacuated tube solar collectors incorporating four wickless heat pipes integrated to a storage tank. Tests were conducted under the weather conditions of Baghdad, Iraq. The heat pipes were of 22 mm diameter, 1800 mm evaporator length and 200 mm condenser length. Three heat pipe working fluids were employed, ethanol, methanol, and acetone at an inventory of 50% by volume of the heat pipe evaporator sections. The system was tested outdoors with various load conditions. Results showed that the system performance was not sensitive to the type of heat pipe working fluid employed here. Improved overall efficiency of the solar system was obtained with hot water withdrawal (load conditions) by 14%. A theoretical analysis was formulated for the solar system performance using an energy balance based iterative electrical analogy formulation to compare the experimental temperature behavior and energy output with theoretical predictions. Good agreement of 8% was obtained between theoretical and experimental values.

Go to article

Authors and Affiliations

Hassan Naji Salman Al-Joboory
Download PDF Download RIS Download Bibtex

Abstract

The performance of ten wickless heat pipes without adiabatic sections is investigated experimentally at low heat inputs 120 to 2000 W/m2 for use in solar water heaters. Three heat pipe diameter groups were tested, namely 16, 22, and 28.5 mm. Each group had evaporator lengths of 1150, 1300, and 1550 mm, respectively, with an extra evaporator length of 1800 mm added to the second group. The condenser section length of all heat pipes was 200 mm. Ethanol, methanol, and acetone were utilized as working fluids, at inventory of 25%, 50%, 70%, and 90% by evaporator volume respectively. The 22 mm diameter pipes were tested at inclination angles 30◦, 45◦, and 60◦. Other diameter groups were tested at 45◦ only. Experiments revealed increased surface temperatures and heat transfer coefficients with increased pipe diameter and evaporator length, and that increased working fluid inventory caused pronounced reduction in evaporator surface temperature accompanied by improved heat transfer coefficient to reach maximum values at 50% inventory for the selected fluids. Violent noisy shocks were observed with 70% and 90% inventories with the tested heat pipes and the selected working fluids with heat flux inputs from 320–1900 W/m2. These shocks significantly affected the heat pipes heat transfer capability and operation stability. Experiments revealed a 45◦ and 50% optimum inclination angle of fill charge ratio respectively, and that wickless heat pipes can be satisfactorily used in solar applications. The effect of evaporator length and heat pipe diameter on the performance was included in data correlations.

Go to article

Authors and Affiliations

Hassan Naji Salman Al-Joboory

This page uses 'cookies'. Learn more