Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Oil-in-water emulsion is thermodynamically unstable system that undergoes destabilization with time. The tripropylene glycol diacrylate (TPGDA) monomer which can potentially to increase the crosslink density of polymer blends is unstable in water due to its low water solubility properties. However, the stability of TPGDA emulsion could be improved by adding an adequate amount of surfactant. This study addresses the effect of different Tween 20 (surfactant) concentration on emulsion stability of TPGDA. Model emulsion ranging between 0.1 wt% to 3 wt% of Tween 20 and a control were prepared using heavy duty homogenizer. The emulsion was characterised by FTIR, microstructure analysis, phase separation observation and creaming index during storage time. Emulsion containing 0.4 wt% Tween 20 showed the longest stability at 24 hours and a creaming index of 0%, which is enough for an ideal emulsion. The FTIR spectra displayed the interaction of TPGDA and Tw-20, proving that the emulsion is fully mixed and stabilized. The results are further supported by optical microscopy, which observed no droplet aggregation and flocculation in the TPGDA emulsion with the presence of 0.4 wt% of Tw-20 surfactant. This information about Tw-20 is beneficial, making it a promising surfactant for enhancing the emulsion stability of the TPGDA emulsion.
Go to article

Authors and Affiliations

S.S.M. Shirajuddin
1 2
ORCID: ORCID
M.M. Al Bakri Abdullah
2
ORCID: ORCID
C.M.R. Ghazali
3
K. Hussin
2
M.F.A. Rahman
1

  1. Malaysian Nuclear Agency, Radiation Processing Technology, Bangi, 43000 Kajang, Selangor, Malaysia
  2. Universiti Malaysia Perlis, Faculty of Chemical Engineering Technology, 01000 Kangar, Perlis, Malaysia
  3. Universiti Malaysia Terengganu, School of Fundamental Science, 21030 Kuala Terengganu, Terengganu, Malaysia
Download PDF Download RIS Download Bibtex

Abstract

Dramatic population and economic growth result in increasing demand for concrete infrastructure, which leads to an increment of freshwater demand and a reduction of freshwater resources. However, freshwater is a finite resource, which means that freshwater will be used up someday in the future when freshwater demand keeps increasing while freshwater resources are limited. Therefore, replacing freshwater with seawater in concrete blending seems potentially beneficial for maintaining the freshwater resources as well as advantageous alternatives to the construction work near the sea. There have been few experimental research on the effect of blending water salt content on the mechanical and physical characteristics of concrete, particularly high-strength concrete. Therefore, a research study on the influence of salt concentration of blending water on the physical and mechanical properties of high-strength concrete is necessary. This study covered the blending water salinity, which varied from 17.5 g/L to 52.5 g/L and was determined on the physical and mechanical properties, including workability, density, compressive strength, and flexural strength. The test results indicate that the use of sea salt in blending water had a slight negative influence on both the workability and the density of high strength concrete. It also indicates that the use of sea salt in blending water had a positive influence on both the compressive strength and the flexural strength of high-strength concrete in an earlystage.
Go to article

Authors and Affiliations

R.A. Razak
1 2
ORCID: ORCID
K. Yen Ng
2
ORCID: ORCID
M.M. Al Bakri Abdullah
1 3
ORCID: ORCID
Z. Yahya
1 2
ORCID: ORCID
R. Mohamed
1
ORCID: ORCID
K. Muthusamy
4
ORCID: ORCID
W.A.W. Jusoh
5
ORCID: ORCID
M. Nabiałek
6
ORCID: ORCID
B. Jeż
7
ORCID: ORCID

  1. Universiti Malaysia Perlis, Geopolymer and Green Technology, Center of Excellence (CEGeoGTech), Kangar, Malaysia
  2. Universiti Malaysia Perlis (UniMAP), Faculty of Civil Engineering Technology, Perlis, Malaysia
  3. Universiti Malaysia Perlis (UniMAP), Faculty of Chemical Engineering Technology Perlis, Malaysia
  4. Malaysia Pahang, Faculty of Civil Engineering Technology, Universiti Pahang Malaysia
  5. Universiti Tun Hussein Onn, Faculty of Engineering Technology, Pagoh, Johor, Malaysia
  6. Częstochowa University of Technology, Faculty of Production Engineering and Materials Technology, Department of Physics, 19 Armii Krajowej Av., 42-200 Częstochowa, Poland
  7. Czestochowa University of Technology, Faculty of Mechanical Engineering and Computer Science, Department of Technology and Automation, 19c Armii Krajowej Av., 42-200 Czestochowa, Poland

This page uses 'cookies'. Learn more