Search results

Filters

  • Journals

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The present paper addresses the analysis of structural vibration transmission in the presence of structural joints. The problem is tackled from a numerical point of view, analyzing some scenarios by using finite element models. The numerical results obtained making use of this process are then compared with those evaluated using the EN 12354 standard vibration reduction index concept. It is shown that, even for the simplest cases, the behavior of a structural joint is complex and evidences the frequency dependence. Comparison with results obtained by empirical formulas reveals that those of the standards cannot accurately reproduce the expected behavior, and thus indicate that alternative complementary calculation procedures are required. A simple methodology to estimate the difference between numerical and standard predictions is here proposed allowing the calculation of an adaptation term that makes both approaches converge. This term was found to be solution-dependent, and thus should be evaluated for each structure.

Go to article

Authors and Affiliations

Jaime Ramis
Enrique Segovia
Jesús Alba
Jesús Carbajo
Luís Godinho
Download PDF Download RIS Download Bibtex

Abstract

Characterization of sound absorbing materials is essential to predict its acoustic behaviour. The most commonly used models to do so consider the flow resistivity, porosity, and average fibre diameter as parameters to determine the acoustic impedance and sound absorbing coefficient. Besides direct experimental techniques, numerical approaches appear to be an alternative to estimate the material's parameters. In this work an inverse numerical method to obtain some parameters of a fibrous material is presented. Using measurements of the normal incidence sound absorption coefficient and then using the model proposed by Voronina, subsequent application of basic minimization techniques allows one to obtain the porosity, average fibre diameter and density of a sound absorbing material. The numerical results agree fairly well with the experimental data.

Go to article

Authors and Affiliations

Jesus Alba
Romina del Rey
Jaime Ramis
Jorge Arenas
Download PDF Download RIS Download Bibtex

Abstract

It is well known that sound absorption and sound transmission properties of open porous materials are highly dependent on their airflow resistance values. Low values of airflow resistance indicate little resistance for air streaming through the porous material and high values are a sign that most of the pores inside the material are closed. The laboratory procedures for measuring airflow resistance have been stan- dardized by several organizations, including ISO and ASTM for both alternate flow and continuous flow. However, practical implementation of these standardized methods could be both complex and expensive. In this work, two indirect alternative measurement procedures were compared against the alternate flow standardized technique. The techniques were tested using three families of eco-friendly sound absorbent materials: recycled polyurethane foams, coconut natural fibres, and recycled polyester fibres. It is found that the values of airflow resistance measured using both alternative methods are very similar. There is also a good correlation between the values obtained through alternative and standardized methods.
Go to article

Authors and Affiliations

Romina del Rey
Jesus Alba
Jorge P. Arenas
Jaime Ramis

This page uses 'cookies'. Learn more