Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The Ti15Mo alloy has been studied towards long-term corrosion performance in saline solution at 37°C using electrochemical impedance spectroscopy. The physical and chemical characterization of the material were also investigated. The as-received Ti15Mo alloy exhibits a single β-phase structure. The thickness of single-layer structured oxide presented on its surface is ~4 nm. Impedance measurements revealed that the Ti15Mo alloy is characterized by spontaneous passivation in the solution containing chloride ions and formation of a double-layer structured oxide composed of a dense interlayer being the barrier layer against corrosion and porous outer layer. The thickness of this oxide layer, estimated based on the impedance data increases up to ~6 nm during 78 days of exposure. The observed fall in value of the log|Z|f = 0.01 Hz indicates a decrease in pitting corrosion resistance of Ti15Mo alloy in saline solution along with the immersion time. The detailed EIS study on the kinetics and mechanism of corrosion process and the capacitive behavior of the Ti15Mo electrode | passive layer | saline solution system was based on the concept of equivalent electrical circuit with respect to the physical meaning of the applied circuit elements. Potentiodynamic studies up to 9 V vs. SCE and SEM analysis show no presence of pitting corrosion what indicates that the Ti15Mo alloy is promising biomaterial to long-term medical applications.

Go to article

Authors and Affiliations

M. Szklarska
B. Łosiewicz
G. Dercz
M. Zubko
R. Albrecht
D. Stróż
Download PDF Download RIS Download Bibtex

Abstract

In the presented work, two multicomponent Cr 25Z 25Co 20Mo 15Si 10Y 5 and Cr 25Co 25Zr 20Mo 15Si 10Y 5 alloys were produced from bulk chemical elements using the vacuum arc melting technique. X-ray diffraction phase analysis was used to determine the phase composition of the obtained materials. Microstructure analysis included scanning electron microscopy and energy dispersive X-ray spectroscopy techniques. The studies revealed the presence of multi-phase structures in both alloys. Elemental distribution maps confirmed the presence of all six alloying elements in the microstructure. The segregation of chemical elements was also observed. Microhardness measurement revealed that both alloys exhibited microhardness from 832(27) to 933(22) HV1.
Go to article

Authors and Affiliations

K. Glowka
1
ORCID: ORCID
M. Zubko
1
ORCID: ORCID
K. Piotrowski
1
ORCID: ORCID
P. Świec
1
ORCID: ORCID
K. Prusik
1
ORCID: ORCID
R. Albrecht
1
ORCID: ORCID
D. Stróż
1
ORCID: ORCID

  1. University of Silesia in Katowice, Institute of Materials Engeenering, Chorzów, Poland

This page uses 'cookies'. Learn more