Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The risk of human exposure to finely-dispersed aerosol particles being airborne indoors is determined by the size and the number concentration of particles, the intensity of an aerosol emission source, the air filtration and ventilation efficiency, etc. The emphasis in this article is on behaviour patterns of aerosol particles when exposed to ultrasonic and electrostatic fields in different conditions of air temperature and relative humidity. Wood flour having sizes of interest (characteristic particle diameter about 10 μm) is chosen as a model aerosol. The article considers a physical and mathematical model presenting the evolution of aerosol particles in external fields, taking into account the moisture content and the temperature of a dispersive medium. The efficiency of ultrasonic and electrostatic precipitation in different relative humidity and temperature conditions in an enclosed space was studied using optical measurement methods of particle size and concentration.

Go to article

Authors and Affiliations

Maria Stepkina
Olga Kudryashova
Alexandra Antonnikova
Download PDF Download RIS Download Bibtex

Abstract

Acoustic radiation sources are successfully applied to cleaning rooms from dust of fairly large particle sizes (ten micrometers and larger). The sedimentation of fine aerosols (particle diameter of 1-10 microns) is a more complicated challenge. The paper is devoted to the substantiation of the acoustic sedimentation method for such aerosols. On the basis of the mathematical model analysis for aerosol sedimentation by the acoustic field the mechanisms of this process have been determined and include the particle coagulation acceleration and radiation pressure effect. The experimental results of the acoustic sedimentation of a model aerosol (NaCl) are shown. The calculation results according to the mathematical model for coagulation and sedimentation, on the basis of the Smolukhovsky’s equation taking into account various mechanisms of aerosol sedimentation by sound depending on the particle sizes and sound intensity, are given. The necessity to use intensive sources of high-frequency sound has been confirmed, suggesting that these sources must be located above dust clouds.
Go to article

Authors and Affiliations

Olga Kudryashova
Alexandra Antonnikova
Natalya Korovina
Igor Akhmadeev

This page uses 'cookies'. Learn more