Search results

Filters

  • Journals

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Among the copper based alloys, Cu-Al-X bronzes are commonly used as mold materials due to their superior physical and chemical properties. Mold materials suffer from both wear and corrosion, thus, it is necessary to know which one of the competitive phenomenon is dominant during the service conditions. In this study, tribo-corrosion behavior of CuAl10Ni5Fe4 and CuAl14Fe4Mn2Co alloys were studied and electrochemical measurements were carried out using three electrode system in 3.5 % NaCl solution in order to evaluate their corrosion resistance. In tribo-corrosion tests, alloys were tested against zirconia ball in 3.5 % NaCl solution, under 10N load with 0.04 m/s sliding speed during 300 and 600 m. The results indicate that (i) CuAl10Ni5Fe4 alloy is more resistant to NaCl solution compared to CuAl14Fe4Mn2Co alloy that has major galvanic cells within its matrix, (ii) although CuAl10Ni5Fe4 alloy has lower coefficient of friction value, it suffers from wear under dry sliding conditions, (iii) as the sliding distance increases, corrosion products on CuAl14Fe4Mn2Co surface increase at a higher rate compared to CuAl10Ni5Fe4 leading to a decrease in volume loss due to the lubricant effect of copper oxides.

Go to article

Authors and Affiliations

Ş.H. Atapek
G. Aktaş Çelik
Ş. Polat
B. Pisarek
Download PDF Download RIS Download Bibtex

Abstract

Among the family of stainless steels, cast austenitic stainless steels (CASSs) are preferably used due to their high mechanical properties

and corrosion resistance. These steels owe their properties to their microstructural features consisting of an austenitic matrix and skeletal

or lathy type δ-ferrite depending on the cooling rate. In this study, the solidification behavior of CASSs (304L and 316L grades) was

studied using ThermoCalc software in order to determine the solidification sequence and final microstructure during cooling. Theoretical

findings were supported by the microstructural examinations. For the mechanical characterization, not only hardness measurements but

also tribological studies were carried out under dry sliding conditions and worn surfaces were examined by microscopy and 3D

profilometric analysis. Results were discussed according to the type and amount of microstructural features.

Go to article

Authors and Affiliations

G. Aktaş Çelik
Ş. Polat
Ş.H. Atapek
G.N. Haidemenopoulos

This page uses 'cookies'. Learn more